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Abstract

Many of the objects imaged by the forthcoming generation of astronomical surveys
will overlap visually. These objects are known as blends. Distinguishing and char-
acterizing blended light sources is a challenging task, as there is inherent ambiguity
in the type, position, and properties of each source. We propose SMC-Deblender, a
novel approach to probabilistic astronomical cataloging based on sequential Monte
Carlo (SMC). Given an image, SMC-Deblender evaluates catalogs with various
source counts by partitioning the SMC particles into blocks. With this technique,
we demonstrate that SMC can be a viable alternative to existing deblending meth-
ods based on Markov chain Monte Carlo and variational inference. In experiments
with ambiguous synthetic images of crowded starfields, SMC-Deblender accurately
detects and deblends sources, a task which proves infeasible for Source Extractor,
a widely used non-probabilistic cataloging program.

1 Introduction

The properties of stars and galaxies are of great scientific importance [1, 2]. Astronomical cataloging,
which is the task of inferring these properties from astronomical images, is difficult for images that
contain many visually overlapping sources, known as blends [3]. A major challenge of deblending
sources in such an image is that the number of sources is uncertain; one must infer whether the
intensities of a set of pixels were produced by a single bright source or several dimmer sources.
Consequently, the properties of the overlapping sources are also ambiguous. Blending is poised to
become an even more prevalent issue in the near future; for example, it is estimated that 62% of
galaxies detected by the forthcoming Legacy Survey of Space and Time (LSST) will be blended [4].

Probabilistic cataloging addresses the challenges posed by blends [5, 6, 7, 8]. Whereas traditional
astronomical cataloging programs supply single-catalog point estimates that fail to incorporate the
uncertainty inherent in ambiguous images [9, 10], probabilistic methods infer a posterior distribution
over all possible catalogs, assigning a higher posterior probability to catalogs that are more likely to
have yielded a particular image. Point estimates derived from this posterior distribution are endowed
with an estimate of uncertainty that reflects the ambiguity of the original image.

One approach to probabilistic cataloging is to sample catalogs from the posterior distribution using
Markov chain Monte Carlo (MCMC). However, constructing a viable MCMC sampler for this task
is challenging. The number of light sources in a particular image is unknown and each potential
source has an associated set of properties, so any MCMC-based cataloging algorithm must propagate
catalogs across dimensions using a method like reversible jump MCMC [5] or diffusive nested
sampling [6]. Transdimensional MCMC is notoriously difficult to implement and may be inefficient
if the dimension-jumping proposals are poorly designed [11].
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Recently, Liu et al. proposed an alternative method of probabilistic cataloging that utilizes modern
techniques in variational inference (VI) [8]. Instead of sampling catalogs from the exact posterior
distribution, they posit an approximate form for the posterior and optimize the parameters of this
variational approximation. This approach avoids transdimensional sampling and is orders of mag-
nitude faster than MCMC thanks to recent advances in stochastic optimization and amortization.
However, VI involves the demanding task of nonconvex optimization, and even if this optimization is
successful, the quality of the resulting posterior approximation may be difficult to ascertain.

We propose SMC-Deblender, a novel probabilistic cataloging technique based on sequential Monte
Carlo (SMC) [12, 13] rather than MCMC or VI. SMC-Deblender is an efficient method for sampling
catalogs from the posterior distribution. It avoids transdimensional sampling by partitioning the
SMC particles into dimension-specific blocks, a strategy that is well-suited for the modern age of
GPU computing. SMC-Deblender accurately deblends light sources in highly ambiguous synthetic
images, a task that is demonstrated to be infeasible for Source Extractor, one of the most widely used
non-probabilistic cataloging programs.

2 Statistical Model

We consider a generative model for small images depicting dense clusters of stars. It may be
instructive to think of each of these small images as an ambiguous section of a larger image. Let x be
an image with a height of H pixels and a width of W pixels; in our experiments, we set H and W
to 15. Let s ∼ F1 denote the number of stars in the image, where F1 is a generic distribution. The
number of stars in an image is commonly modeled using a Poisson distribution. Here, however, we
set F1 to be Uniform{0, 1, 2, ..., D} for some maximum number of stars D; this choice ensures that
we generate images with a variety of star densities in our experiments.

Each star in the image has a location and a flux (i.e., brightness). Given s, we sample locations
u1, u2, ..., us

iid∼ F2 and fluxes f1, f2, ..., fs
iid∼ F3. In our experiments, F2 is uniform across the

H ×W image, but one could define F2 differently (e.g., truncated Gaussian). For simplicity, we
set F3 to N (µ, σ2), where µ = 10fmin and σ = 2fmin for a positive baseline flux fmin; however, the
fluxes would also be well-modeled by a truncated power-law distribution. If s = 0, no locations or
fluxes are sampled and the image x is just background noise.

Let z = {s, {uj}sj=1, {fj}sj=1} denote a catalog, i.e., a collection of latent variables that describes
the imaged stars. Given a catalog z, the intensity of the image at pixel (h,w) is xhw | z ∼ F4. We
set F4 to Poisson(λhw(z) + γ), where γ is the background intensity of the image and λhw(z) =∑s

j=1 fjψ((h,w)− uj). The function ψ(·) is a point spread function (PSF), a deterministic function
that describes the appearance of a star at each pixel. We use a bivariate Gaussian density as the PSF.

3 Sequential Monte Carlo

Given an image x, we use sequential Monte Carlo (SMC) to characterize the posterior distribution of
possible catalogs p(z|x) by generating a set of weighted samples, or particles, from p(z|x) [12, 13].
SMC constructs a weighted particle approximation of an intractable target distribution by sampling
particles from a tractable initial proposal, propagating them through a sequence of intermediate
distributions, and updating their weights accordingly. At each step along this sequence, the particles
are resampled to prevent the weight of any one particle from dominating the others.

We propose a convenient SMC-based method for comparing catalogs that contain different numbers
of light sources. By allocating an equal number of particles to each candidate source count s and
preserving this block structure during resampling and propagation, we can use the weighted particles
returned in the final iteration to assess the posterior probabilities of catalogs across values of s. This
approach delays transdimensional inference until the final iteration and thus avoids transdimensional
sampling altogether, a favorable property that is not shared by alternatives such as reversible jump
MCMC [14]. We formalize this novel procedure, which we call SMC-Deblender, in Algorithm 1.

SMC-Deblender uses likelihood tempering to impose a sequential structure that links the prior
p(z) to the intractable posterior p(z|x) ∝ p(z)p(x|z). The intermediate targets p(z)p(x|z)τt are
constructed according to a temperature schedule 0 = τ0 < · · · < τT = 1, which can be prespecified
or determined adaptively. In iteration t of SMC, we employ the adaptive scheme proposed in [12]
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Algorithm 1 Likelihood-tempered sequential Monte Carlo with block resampling (SMC-Deblender)
Input: Image x; likelihood p(x|z); prior p(z); method to construct invariant kernel Mτ (·|·) for τ ∈ [0,1];

number of blocks B; number of particles per block N ; minimum effective sample size ESSmin.

Step t← 0. Temperature τt ← 0.

Particles z(t)
bk

iid∼ p(z) for b ∈ {1, ..., B}, k ∈ {1, ..., N} (∀b, s
(t)
b1 = · · · = s

(t)
bN ).

Unnormalized weights w(t)
bk ← 1 for b ∈ {1, ..., B}, k ∈ {1, ..., N}.

Inter-block normalized weights W (t)
bk ←

1
NB for b ∈ {1, ..., B}, k ∈ {1, ..., N}.


INITIALIZE

Intra-block normalized weights W̃ (t)
bk ←

1
N for b ∈ {1, ..., B}, k ∈ {1, ..., N}.

Intra-block effective sample size ESS(t)
b ←

(∑
k(W̃

(t)
bk )2

)−1 for b ∈ {1, ..., B}.

while τt < 1 do
t← t + 1. Update τt ← τt−1 + δ, where δ ∈ [0, 1−τt−1] (see section 3 of text).

for block b ∈ {1, ..., B} do
if ESS(t−1)

b < ESSmin then

 RESAMPLEResample {z(t−1)
bk }Nk=1 using {W̃ (t−1)

bk }Nk=1.

Reset W (t−1)
bk ← 1

N

∑
l W

(t−1)
bl and W̃

(t−1)
bk ← 1

N for k ∈ {1, ..., N}.

Sample z
(t)
bk ∼Mτt−1

(·|z(t−1)
bk ) for b ∈ {1, ..., B}, k ∈ {1, ..., N} (∀b, k, s

(t)
bk = s

(t−1)
bk ).

}
PROPAGATE

Compute w
(t)
bk ← W

(t−1)
bk p(x|z(t)

bk )τt−τt−1 for b ∈ {1, ..., B}, k ∈ {1, ..., N}.
Compute W

(t)
bk ← w

(t)
bk /(

∑
b

∑
l w

(t)
bl ) for b ∈ {1, ..., B}, k ∈ {1, ..., N}.


UPDATE WEIGHTSCompute W̃

(t)
bk ← w

(t)
bk /(

∑
l w

(t)
bl ) for b ∈ {1, ..., B}, k ∈ {1, ..., N}.

Compute ESS(t)
b ←

(∑
k(W̃

(t)
bk )2

)−1 for b ∈ {1, ..., B}.

Output: Weighted particle set {{W (t)
bk , z

(t)
bk }

N
k=1}

B
b=1.

to obtain a tempering change δb ∈ [0, 1−τt−1] for each particle block, and we take the minimum of
these values as the global δ.

The number of blocks B is a design choice. It should be as large as the maximum anticipated number
of light sources in an image (plus one, to allow s=0), but not much larger — without parallelization,
the runtime of the algorithm increases withB for a fixed number of particles per blockN . Resampling
is performed based on the intra-block normalized weights. We use adaptive stratified resampling to
reduce the variability introduced by resampling; that is, we resample the particles in block b only if
their effective sample size ESSb falls below a threshold ESSmin, which we set to N/2.

In the propagation step, the (possibly) resampled particles are passed to a Markov kernel Mτt−1
that

is invariant under the previous target. Following [12], we define Mτt−1
to be a Metropolis-Hastings

(MH) kernel comprising a truncated Gaussian random walk for the locations and a Gaussian random
walk for the fluxes, with s unchanged for each particle. After propagation, the particle weights
are recalculated by applying an incremental update to the previous inter-block normalized weights.
When the temperature reaches one, the algorithm returns a set of catalogs sampled from the posterior
distribution along with their corresponding inter-block weights.

4 Experiments

We evaluate SMC-Deblender using 1,000 synthetic images generated from the model in section 2,
each containing up to 10 light sources. To reflect that this upper bound is unknown in practice, we
use 13 blocks of 500 particles, thus allowing SMC-Deblender to detect as many as 12 light sources
in an image. We compare the performance of our method to SEP, a Python interface to Source
Extractor, which is a popular tool for analyzing astronomical images [9, 15]. The experiments were
implemented in PyTorch and run on one NVIDIA GeForce RTX 2080 Ti GPU.1

Figure 1 displays five example images from our data set, as well as the reconstructions produced by
SMC-Deblender and SEP. Figure 2 reports the classification accuracy, calibration, and mean absolute
error of the two methods’ estimates of the true source count s across starfields of various densities.

SMC-Deblender yields correct point estimates of the true source count in 765 of the 1,000 images
(76.5%), with a mean absolute error of 0.267. It requires 60 seconds per image, on average. Our

1Code is available at https://github.com/timwhite0/smcdeblender.
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Figure 1: Reconstructions of five synthetic images with different source counts. SMC-Deblender’s reconstruc-
tions are based on the SMC particle with the highest weight. SEP’s reconstructions are obtained by plugging its
point estimates into the likelihood function from section 2.

Figure 2: Accuracy, calibration, and mean absolute error of estimated source counts. Error bands indicate
middle 90% of bootstrap estimates in left panel and middle 90% of images in center and right panels.

method is also well-calibrated, and it attaches greater uncertainty to its point estimates in more
crowded images. In contrast, SEP struggles to separate blends of more than two stars despite
extensive tuning, often identifying one or two bright sources and failing to characterize nuanced
blends of fainter sources. SEP identifies the correct s in only 209 of the 1,000 images (20.9%), with a
mean absolute error of 3.542.

5 Discussion

We have demonstrated the feasibility of sequential Monte Carlo as a probabilistic cataloging method.
Our proposed algorithm, SMC-Deblender, provides accurate estimated source counts and calibrated
uncertainty assessments in highly ambiguous images. SMC-Deblender outperforms the popular
non-probabilistic cataloging tool SEP by a considerable margin, and its design suggests that it has
advantages over MCMC and VI. A direct comparison between SMC-Deblender, MCMC-based
methods [5, 6, 7], and VI-based methods [8] would be one immediate extension of our work.

Another avenue of further investigation is scalability. The block structure of SMC-Deblender may
offer opportunities for parallelization. We also theorize that customization of the propagation kernel
— e.g, using delayed-acceptance [16] or normalizing flows [17] — could allow our method to scale
more easily to larger images. Finally, it is of interest to adapt our method to other image analysis
tasks in astronomy, such as the detection and characterization of gravitational lensing.
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