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Abstract

Phase retrieval under very low dose conditions is a challenging problem as all
the phase retrieval algorithms become unstable with the presence of very high
Poisson noise. To mitigate this problem, in-situ coherent diffractive imaging
(CDI) has been previously proposed which places a high-dose static region next
to the sample region while imaging. Iterative phase retrieval algorithms are then
used to reconstruct both regions from the diffraction patterns with high signal
to noise ratio. While numerical simulations have indicated that in-situ CDI can
reduce radiation dose by one to two orders of magnitude over conventional CDI, it
requires multiple measurements with a common high-dose static region. Here we
demonstrate low-dose phase retrieval with deep image prior, termed LoDIP, for in-
situ CDI. Using both numerical and experimental data, we demonstrate that LoDIP
outperfroms popular iterative phase retrieval algorithms under low-dose conditions.
Our results show that LoDIP is not sensitive to the choice of the static structure
nor to the geometric arrangement between the two objects. Additionally, unlike
previous successful work with in situ CDI, LoDIP does not depend on multiple
measurements with a common static region. We expect that the combination of
deep-learning phase retrieval with in situ CDI will create numerous opportunities
for high-resolution quantitative phase imaging for dose-sensitive materials, such as
biological samples, polymers, organic semiconductors, and energy materials.

1 Introduction and Background

Low-dose CDI Coherent diffractive imaging (CDI) is a lensless imaging technique (Miao et al.
[1999]) that has found broad applications across different disciplines (Miao et al. [2015]). In CDI a
highly coherent wave is incident on an object. The scattered wave by the object produces a diffraction
pattern which is then collected by a detector. If the diffraction pattern is sufficiently oversampled, i.e.
the independently measured points are more than the unknown variable (Miao et al. [1998]), then
the phase can be in principle retrieved from the diffraction pattern via iterative phase-retrieval(PR)
algorithms (Shechtman et al. [2015]). However, many samples of interest for CDI, such as biological
material, polymers or organic semiconductors, require to be imaged with minimal radiation exposure
(low-dose CDI) to prevent damage during data acquisition. As a consequence, the inherent low signal-
to-noise ratio in low-dose measurements poses a challenge for classical phase retrieval algorithms, as
they become severely unstable under heavy Poisson noise.
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Methods for Low-dose CDI For low-dose CDI, the most successful method is in-situ CDI Lo
et al. [2018]. The experimental setup for in-situ CDI is described in Section 2. While successful, this
requires a time-series of diffraction patterns, with the need to be collected with a time-invariant static
region constraint (see Section 2). In this work, we propose a new method LoDIP which adopts this
experimental setup but uses an implicit neural prior in the iterative phase-retrieval(PR) algorithm.
Experiments show that this combination gives similar performance with a single diffraction pattern.
This also bypasses the need for ensuring a time-invariant static constraint, thus greatly simplifying
the experimental process.

Figure 1: LoDIP experimental setup schematic:
For imaging samples in low-light, a static region is
added in the field of view and exposed to the full
fluence of the source illumination. Whereas the
fluence on the dose sensitive sample is reduced to
a tolerable limit as measured in photons per pixel
(Np/px). The first two columns are the diffrac-
tion pattern and the image sample without a static
structure. And the last two columns are the same
sample with a static region. At lower illumination
(bottom row), the cell is very dark and it is hard to
make out high resolution details.

Existing PR algorithms Many algorithms
have been developed to solve the PR prob-
lems with single diffraction pattern only Fienup
[1978], Miao et al. [2000], Bauschke et al.
[2002], Luke [2004], Rodriguez et al. [2013],
Pham et al. [2019]. While powerful, these al-
gorithms require tuning of several algorithmic
parameters and expert strategies. And most al-
gorithms face severe performance degradation
in low-dose CDI due to very high Poisson noise.

Recently, data-driven methods (i.e. supervised
learning) have shown great potential for solv-
ing inverse problems in computational imaging
Kamilov et al. [2015], Wang et al. [2019], Wu
et al. [2016], Goy et al. [2018], Li et al. [2019],
Xue et al. [2019] including phase retrieval (for
CDI) Chang et al. [2023]. This method, while
successful, necessitates a substantial amount of
labeled data. Moreover, depending on the net-
work architecture and the amount of data, the
training process can take several days.

Deep Learning for single-instance PR In this
work, inspired by the work on Deep Image Prior
(DIP) Ulyanov et al. [2018], we propose to use
the deep image prior method (untrained neural prior) for single-instance phase retrieval. Similar to
DIP, LoDIP does not require training om large labelled dataset. We note that the DIP framework
alone has been used in some computational imaging applications before Anirudh et al. [2018], Liu
et al. [2019], Jagatap and Hegde [2019]. However, it was never applied to the problem of low-dose
imaging exploiting directly the physical set up of in-situ CDI. In our experiments we show that the
use of a high dose static region greatly improves the quality of the sample reconstruction especially
in the low dose regime and obtains results comparable or superior to state of the art methods.

2 Proposed Method

LoDIP: Experimental setup The method proposed in this work combines deep image prior
[Ulyanov et al., 2018] and in-situ CDI [Lo et al., 2018] for low-dose phase retrieval. Our method
exploits the power of an untrained neural prior, which does not require a large dataset for training,
together with the experimental setup of in-situ CDI. In in-situ CDI, the sample of interest is placed
within a finite support next to a heavily scattering, dose-tolerant static region such as a lacey Au
pattern on an optical stage. A source of coherent X-rays provides plane-wave incident illumination at
an energy suited to the sample thickness and K absorption edges of atomic species present within the
sample. For biological specimens, a beam energy of 530 eV corresponds well to the window between
the carbon and oxygen absorption edges and is the energy used in the simulations presented in this
work [Kirz et al., 1995].

The fluence(radiation dose) on the dose-sensitive sample is reduced to a tolerable limit by the presence
of an attenuator while the static region is exposed to the full fluence of the incident illumination.
Far-field diffraction patterns are recorded from this setup containing Poisson noise relative to the
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total fluence on the detector. An untrained neural prior combined with an accurate forward model for
the imaging setup is then used to perform phase retrieval and recover the exit wave from the sample,
exploiting the interference in Fourier space between the high-fluence static region and the sample to
increase the signal to noise ratio (SNR) in measurements.

PR with untrained neural prior Given an image of an object X ∈ Cn×n, the measurement
process to capture a diffraction pattern Y ∈ Rm×m can be described as: Y = |F (X)|2 To meet
the oversampling criteria, the original object X ∈ Cn×n is zero-padded to size m×m, where
m = 2× n. And a support S0 represents the location of the object in this empty background. The
overall goal of the phase retrieval problem is to recover the image X from the captured diffraction
pattern Y . In the presence of a non-overlapping static structure U ∈ Cn×n to the above setup, the
optimization problem can be specified as:

min
X̂∈Cn×n

ℓ

(
Y ,

∣∣∣F (
X̂ +U

)∣∣∣2) , s.t. (1− S0)⊙ X̂ = [0]m×m (2.1)

Here, the objective function represents the data consistency term; while the support constraint utilizes
the known support, requiring the off-support values to be zero.

To impose an implicit neural prior on the variable X̂ , we reparametrize it with a neural network
gW (z) . W represents the learnable parameters i.e. weights of the neural network and z is a fixed
input, in our case the given diffraction pattern. Following the literature on this topic, we have used a
U-Net Ronneberger et al. [2015] with skip connections and ReLU activation functions.

We observe that the results are not sensitive to the relative size or relative location of the sample
and the static structure, nor to the specific choice of the static structure. The method also works
with an inaccurate estimate of the support. This makes LoDIP a very general and robust method
which has potential to be applied to a wide range of experimental data. Finally, unlike Fourier
holography McNulty et al. [1992], Barmherzig et al. [2019], the proposed method works with
different illuminations of the cell and the static structure.

To compare the methods, we use (1) physically accurate simulations of a gold lacey for the static
structure and a biological cell for the sample region Fig. 2, as well as (2) diffraction patterns
experimentally measured with a 534 nm HeNe laser Fig. 3.

3 Experimental Results and Discussion

Figure 2: Experimental Results on biological cell sample. (Top row) Reconstruction at high photon
count (1000 photon/pixel). (Bottom row) Reconstruction at low-photon counts (5 photon/pixel). For
each method we report the peak signal-to-noise ratio (PSNR), larger the better.

Data: simulated and experimental The simulated data uses a simulated 20-nm thick gold lacey
pattern as the static structure and a simulated cell consisting of a vesicle containing water and protein
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aggregates. The illumination on the static structure has been fixed at 1010 photons per µm−2. While
the illumination on the sample has been varied from 103 to 107 photons per µm−2. The lighting
conditions have been graded in number of incident photons per pixel (Np/px in Fig. 2) and Poisson
noise has been applied based on the total number of incident photons.

For the optical laser data, the static structure is a 100 µ pinhole exposed to the same incident
illumination as the sample. This data was reused with permission from Lo et al. [2018]. Further
information about the generation of simulated data and optical laser data collection can be found in
their previous work on In-Situ CDI [Lo et al., 2018].

Reconstruction of biological sample In Fig. 2, we can see the relative performance of the proposed
method vs. popular methods which can be used in this setup. HIO-ref is a modification of the most
popular phase retrieval algorithm Hybrid input-output (HIO) Fienup [1982] to use the static region
constraint. Generalized proximal smoothing (GPS) Pham et al. [2019] is the state of the art method
for phase retrieval.

For the high illumination case of 1000 photons/pixel, it can be seen that both HIO-ref and LoDIP
perform comparably both in terms of PSNR and visually. At low-light conditions, the performance of
all methods degrades. But, LoDIP performs comparable to GPS and better than all other methods.
GPS performs very well on simulated data. But no available version of GPS can work on experimental
data in the presence of non-idealities such as a probe function. This prevents it from being used on
the experiments in the next section.

Reconstruction from experimental data As a proof-of-concept experiment, we demonstrate the
proposed method on experimentally captured diffraction patterns (shown in Fig. 3 left column).
The object is complex-valued and the optical setup includes a probe. The in-situ CDI method
Lo et al. [2018] uses 50 diffraction patterns with a fixed time-invariant reference object in all
the images. HIO-ref and LoDIP use a single diffraction pattern. Since there is no ground truth
available, we use the relative error (R-factor) calculated in the Fourier domain: The R-factor RF is a
measure of the similarity between the captured diffraction pattern Y to the Fourier magnitudes of the
reconstruction X̂ . The table in Fig. 3 shows the average RF from 20 independent reconstructions of
a single diffraction pattern. LoDIP gives performance comparable to in-situ CDI without requiring
multiple diffraction patterns. Fig. 3 shows the means and variance image obtained from the top 5
reconstructions out of 20 independent runs. The LoDIP reconstructions have lower variance and thus
are more consistent. The reconstruction from HIO-ref also has comparable RF but shows strong
visible artefacts.

Figure 3: Reconstruction using experimental data. The proposed method LoDIP uses a single
diffraction pattern to produce a reconstruction of comparable quality as in-situ CDI which uses 50
samples. The arrow indicates the artefacts in the HIO-ref reconstructions.(Left) (Top) Sample of
experimentally captured diffraction pattern. (Bottom) Quantitative comparison. Mean and standard
deviation of R-factor(RF , lower the better). (Right) Means (Top) and variance (Bottom) calculated
of the top five reconstructions from 20 independent runs.

4



Conclusion The LoDIP method leveraging an untrained neural prior offers a robust approach for
phase retrieval at low photon counts. As demonstrated by our experiments, LoDIP outperforms other
iterative methods such as HIO in image reconstruction under low-dose conditions, and, unike GPS, it
can be successfully applied to experimental data. We anticipate applications of the LoDIP method
to X-ray imaging of dose-sensitive samples of importance in a variety of fields, such as organic
semiconductors relevant to modern perovskite solar cells and battery materials, as well as biological
samples concerning cellular interactions and life cycles.
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