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Abstract

Particle-mesh simulations trade small-scale accuracy for speed compared to tradi-
tional, computationally expensive N-body codes in cosmological simulations. In
this work, we show how a data-driven model could be used to learn an effective
evolution equation for the particles, by correcting the errors of the particle-mesh
potential incurred on small scales during simulations. We find that our learnt
correction yields evolution equations that generalize well to new, unseen initial
conditions and cosmologies. We further demonstrate that the resulting corrected
maps can be used in a simulation-based inference framework to yield an unbiased
inference of cosmological parameters. The model, a network implemented in
Fourier space, is exclusively trained on the particle positions and velocities.

1 Introduction

N-body simulations are a ubiquitous tool in astrophysics for modeling the dynamics of particles under
the influence of their collective gravitational potential. While calculating interactions among a small
number of particles can be relatively straightforward (e.g., with algorithms like Verlet integration),
the computational burden escalates sharply with an O(n2) time complexity, where n denotes the
number of particles in the simulation [Hockney and Eastwood, 2021].
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In cosmology, N-body simulations are employed to generate theoretical predictions for the large
scale structure of the Universe by simulating the evolution of the dark matter distribution. These
predictions are then used for comparison with observational data. With the advent of new generations
of astronomical surveys probing increasingly large scales with unprecedented precision, there is a
pressing need for N-body simulations that are both fast and precise on those scales. This has inspired
the development of faster approximate methods, including solvers based on Lagrangian Perturbation
Theory (LPT) [Buchert, 1992, Buchert and Ehlers, 1993] and particle-mesh (PM) simulation-based
approaches [Hockney and Eastwood, 2021]. Commonly used implementations of these techniques
include 2LPT [Crocce et al., 2006], FastPM [Feng et al., 2016], and COLA [Tassev et al., 2013].

Particle-mesh simulations work by binning the particles on a grid depending on their mass and
position. The contribution of the particles to other grid points is calculated using a cloud-in-cell (CIC)
interpolation scheme. Following this step, Poisson’s equation is solved using Fast Fourier Transforms
(FFTs) for the mass distribution on the grid. Once the potential is calculated, its inverse Fourier
transform is obtained using another FFT operation. Forces acting on each particle can be interpolated
using the obtained potential with another CIC. An update to particle positions and velocities are then
computed and a time step is taken. Particle-mesh simulations are limited by either the number of
particles (since assigning the particles to the grid mesh is of order O(n), where n is the number of
particle) or the potential calculation, which is of order O(m logm), where m is the number of grid
nodes [Hockney and Eastwood, 2021, Bodenheimer, 2007].

Unfortunately, these methods trade the small-scale accuracy of full N-body simulations for speed. To
mitigate these limitations, PM simulations can be enhanced by techniques designed to correct the
small-scale interactions, as done by P3M method [Bodenheimer, 2007], or incorporating machine
learning models. However, these methods typically focus on correcting small-scale without consider-
ing the specific cosmology being used (see e.g., He et al. [2019] for a neural network correction of
LPT within a single cosmology), resulting in poor interpretability and questionable generalizability.
As an alternative, the work of e.g. Angulo and White [2010], Ruiz et al. [2011] has focused on
developing simple analytical schemes to rescale an N-body simulations at a particle or halo level
to different cosmologies. However, such schemes cannot generate simulations with varying initial
conditions, and assessing their accuracy is difficult beyond the first order quasi-linear regime.

Inspired by the framework of the effective field theory of large scale structure [Carrasco et al., 2014],
a more principled approach is to learn a correction to the evolution equation of the particles, that is to
say, to learn an effective evolution equation capturing the error introduced by coarse-graining the
gravitational potential on a mesh. This idea was initially explored in Lanzieri et al. [2022], however,
their loss function had to include the ratio of the predicted and reference power spectra. Therefore,
the accuracy of such correction for different, potentially more informative summary statistics is
not guaranteed. In the present work, we show that it is possible to obtain an effective evolution
equation that is robust to variations in cosmological parameters and initial conditions in a physically
principled manner, by only imposing loss terms at the level of the position and velocities of the
particles, effectively enforcing the conservation of global angular and linear momenta.

2 Methods

We used JaxPM, a differential PM simulation package written in JAX 1. Following Lanzieri et al.
[2022] and Chatziloizos et al. [2022], we adopted a fully connected neural network whose outputs
represent the coefficients of a B-spline function with an order of 3. The network is an isotropic
filter in Fourier space with sinusoidal activation functions [Zhumekenov et al., 2019] to preserve
translational and rotational symmetries. Specifically, the network learns to correct the particle-mesh
potential and subsequently applies these corrections to the potential in position space.

In JaxPM, the particle-mesh solver consists of a set of ordinary differential equations (ODEs), enabling
the back-propagation of the gradient to the initial conditions [Lanzieri et al., 2022]. The ODE is:

dx

da
=

v

a3E(a)
(1)

dv

da
=

Fθ(x, a,Ωm, σ8)

a2E(a)
, (2)

1https://github.com/DifferentiableUniverseInitiative/JaxPM
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with the force given by the equation (which includes the neural network correction to the potential):

Fθ(x, a,Ωm, σ8) =
3Ωm

2
∇
(
ϕPM (x) ∗ F−1(1− fθ(a, |k|,Ωm, σ8))

)
. (3)

Here, x represents the positions of the particles, and a corresponds to the cosmological scale factor.
We use F−1 to denote inverse Fourier transform, and fθ(a, |k|,Ωm, σ8) to represent the neural
network. In this study, we employ a total of 32 knots, and the fully connected network consists of 5
hidden layers, each with a size of 64.

For training, we used simulations from the CAMELS suite [Villaescusa-Navarro et al., 2021, Ni et al.,
2023, Villaescusa-Navarro et al., 2023]. We used IllustrisTNG dark matter only simulations from
the LH set, which contains 1000 simulations, each featuring distinct initial conditions and varying
cosmological parameters [Nelson et al., 2019]. Specifically, Ωm and σ8 are sampled within the
range [0.1, 0.5] and [0.6, 1], respectively, using a Latin Hypercube sampling method. Each simulation
consists of 2563 particles within a periodic comoving volume of

(
25Mpch−1

)3
, spanning redshifts

z = 127 to z = 0 and captured in 34 snapshots. During training, the particle-mesh simulation is
initialized at z = 127 and subsequently simulated until z = 0. The remaining 33 snapshots are then
used in the loss function, constructed with the L2 norm of the desired positions and velocities of the
particles in the simulations:

L =
∑
i

33∑
j=0

(
||xnbody

ij − xij ||22 + λ||vnbodyij − vij ||22
)
+ γ

∑
i

β2
i . (4)

Here, xij and vij represent the position and velocity of particle i in snapshot j and βi denotes the
weights of the fully-connected neural network used for the correction, making the second term a
simple L2 regularization. Two hyperparameters λ and γ adjust the contribution of the different losses
and the impact of the regularization, respectively.

3 Results

We explored with different hyperparameters in the loss function to find models with better perfor-
mance. With λ = 0, which effectively removes the contribution of velocities to the loss, the velocities
tended to be over-corrected, even with strong γ regularization. With λ = 1, the L2 norm of the
velocities tended to be bigger than that of the positions, causing the model to prioritize velocity
corrections at the expense of positional accuracy. We found empirically that choosing λ = 0.01 and
γ = 1 balanced the contributions of the three terms.

After fixing these hyperparameters, we trained two models: one with 643 particles and one with
323. Both models were trained using a learning rate of 0.001 on simulations ranging from LH100
to LH500, comprising a total of 400 distinct cosmologies. They were trained respectively for 400
and 500 epochs on a single NVIDIA A100. The complete set of simulations could not be utilized
because of limitations in storage capacity. Out of the remaining 600 simulations, 100 were used for
validation, while the remaining 500 were used for testing.

As shown in Lanzieri et al. [2022] a learnt correction to the evolution equations can generalize
well across different cosmologies, even when trained on a single set of cosmological parameters.
We observed a similar result with our models; however, conditioning the neural network on the
cosmological parameters performed even better, hence we only present the results of the latter
strategy. Figure 1 illustrates how the correction can generalize across various cosmologies and even
different initial conditions. As opposed to Lanzieri et al. [2022], the neural network does not have
access to power spectra during training, making this a valuable tool for assessing the performance of
our correction. This summary statistics is therefore a representative quantification of the performance
of our correction, whereas as it is difficult to assess the effectiveness of the Lanzieri et al. [2022]
correction beyond the power spectrum (e.g. on other summary statistics).

Another key difference between this work and that of Lanzieri et al. [2022] is that they train a
different correction for every set of initial conditions, whereas this work trains a single model capable
of evolving the simulation across any initial conditions. The distribution of power spectra across
the entire range of simulations is depicted in the right column of Figure 1. We find that 85% of
all simulations remain within 30% of the N-body reference. The test simulations with the worse
performances are the ones for which the power spectrum of the initial conditions is more than 10%
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Figure 1: Top row: Simulations with 323 particles. Bottom row: Simulations with 643 particles.
Left two columns: Power spectra of two different simulations for CAMELS (black), JaxPM (blue),
this work (green) and from [Lanzieri et al., 2022] (orange). Right column: Fractional error of same
three methods to the CAMELS simulation for 500 simulations with cosmologies distinct from those
seen during training. The thick lines represent the averages. Note that, as opposed to [Lanzieri et al.,
2022], the method presented here was not trained with the power spectrum explicitly in the loss.

Figure 2: Comparison of z=0 density fields from the CAMELS simulation, our correction to JaxPM,
and the pure JaxPM simulation.

away from those seen during training. We therefore attribute this to the relatively small size of the
training set, and believe that better performances could be achieve with more training examples.

4 Cosmological parameter inference
One of the key questions we wish to address is whether our learnt correction to JaxPM is close enough
to a full N-body simulation that it could be used to perform unbiaised inference of cosmological
parameters (specifically, ΩM and σ8) in a simulation-based inference (SBI) framework [Cranmer
et al., 2020]. As a first test of this, we use the power spectrum of our produced dark matter-only maps
as the compressed statistics to train an Sequential Neural Posterior Estimator (SNPE) [Deistler et al.,
2022] using an ensemble of 5 masked auto-regressive flows (MAFs) to model the density, by making
use of the sbi package2.

Once trained, we use a full N-body simulation obtained through the CAMELS dataset as the data
and compute its power spectrum to infer ΩM and σ8. The results are presented as the red contours in
Fig 3. As a point of comparison, we train another similar SNPE model using JaxPM as the simulator
to obtain the power spectra to perform the same inference, and obtain the blue contours presented in

2https://github.com/mackelab/sbi
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Figure 3: 1 and 2σ constraints on Ωm and σ8 obtained in a SBI framework (with SNPE) using JaxPM
as the simulator (blue contours) and the simulator in this work (red contours). The correction we
propose significantly alleviates the bias otherwise induced by JaxPM in the inference.

Fig 3. As can be seen, the learnt correction significantly alleviates the biases that otherwise plague
the inference.

5 Conclusion
In this work, we have demonstrated how a model trained solely on particle positions and velocities can
learn a data-diven correction to the equations of motion of dark matter particles in fast Particle-Mesh
simulations, and effectively correct the power spectra for different initial conditions and cosmologies.
Furthermore, employing these corrected simulations for cosmological parameter inference effectively
mitigates bias arising from small scales inaccuracies in standard JaxPM simulations.

Through our choice of loss function, our work emphasizes the importance of imposing the preservation
of known conserved quantities. We have found that this, together with learning a correction at the
level of the evolution equation rather than directly in the data space, greatly improves robustness of
the learnt simulator to different initial conditions and cosmologies. Moreover, this opens the door to
more interpretability, as a scheme such as symbolic regression could be used to extract an analytical
expression from the learnt correction.
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