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Abstract

We introduce a Bayesian active learning algorithm that efficiently elucidates phase
diagrams. Using a novel acquisition function that assesses both the impact and
likelihood of the next observation, the algorithm iteratively determines the most
informative next experiment to conduct and rapidly discerns the phase diagrams
with multiple phases. Comparative studies against existing methods highlight the
superior efficiency of our approach. We demonstrate the algorithm’s practical appli-
cation through the successful identification of a skyrmion phase diagram. Finally,
we provide code at https://github.com/Maccy-Z/Active_Learning_Phase_Diagram,
as well as a graphical user interface application.

1 Introduction and Background

The phase diagram represents an indispensable map for understanding the different states of matter and
the transitions between them under varying conditions of temperature and pressure. This conceptual
tool is not only foundational in thermodynamics but also a cornerstone in material science, where
it guides the synthesis and characterization of materials like alloys Okamoto et al. [2016]. In the
realm of superconducting physics, phase diagrams serve a critical role in identifying the conditions
under which materials exhibit superconductivity. The ability to pinpoint the exact pressures and
temperatures that facilitate superconductivity enables researchers to design new materials and improve
upon existing technologies Court and Cole [2020]. As such, the phase diagram is an invaluable
reference for scientists and engineers seeking to manipulate the physical states of matter to innovative
ends. It is crucial to determine the phase diagrams of different systems. The traditional method of
determining the phase diagram, whether experimentally or theoretically, entails a grid search across
the entire phase space, which could become exceedingly time-consuming as the dimension of the
parameter space and the number of phases increase, or if experiments are slow.
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Active learning Settles [2009] is an iterative process where an algorithm repeatedly determines
how to sample new observations based on existing observations. Originally proposed for complex
optimizations Kushner [1964], it found applications in a broad range of problems including optimizing
material design Lookman et al. [2019]. Dai and Glotzer [2020] applied active learning to uncover
phase diagrams using a Gaussian Process (GP) model Rasmussen and Williams [2006]. Using GPs
to quantify uncertainty, their method prioritizes selecting points near the predicted phase boundary
and of high model uncertainty. However, we believe their acquisition function can be improved and
their method is limited to modeling two phases. Tian et al. [2020] investigated phase diagrams with
more than two phases, a classifier predicts phases and generates phase diagrams through prediction
boundaries. However, the uncertainty of the phase boundary is not quantified, and direct observation
of the phase boundary is required to perform phase boundary learning.

We propose a Bayesian active learning framework for efficiently discovering phase diagrams. We
introduce a specially designed acquisition function with a GP-based model. Compared to existing
approaches, our method has the following features: firstly, the phase diagram can contain any number
of phases. Secondly, instead of direct phase transition measurements, only point measurements of
the phase are necessary. Thirdly, our method is able to adapt to noisy measurements of phase. As a
result, our algorithm converges to the true phase diagram considerably faster than existing baselines.

We apply our algorithm to investigate the phase diagram of a spin system on monolayer honeycomb
lattice under the influence of magnetic field. Our algorithm efficiently identifies the skyrmion—a
topological spin configuration—phase diagram with just a small sample. As an exotic state of matter,
skyrmion has great potential in next-generation technological applications in microwave detectors
Finocchio et al. [2015], nano oscillators Liu et al. [2015], Zhou et al. [2015], Carpentieri et al. [2015],
logic gates Zhang et al. [2015], and quantum computation Psaroudaki and Panagopoulos [2021] etc.

2 Methodology

Our objective is to model a phase diagram with n phases (e.g. state of matter) determined by k
parameters x ∈ Rk (e.g. temperature or interaction strength), where experiments (or simulations)
can determine the phase y(x) ∈ {1, ..., n} at point x. Using the active learning framework, at step
t, the model takes existing observations T = {xi, yi}ti=1 and determines the next point to sample,
xt+1. An experiment is performed to give yt+1(xt+1) and this process is repeated. A good algorithm
generates a model that accurately predicts y(x) using the fewest observations possible.

Our Model: The phase diagram is modeled as a collection of n GPs, {f1(a1|x)...fn(an|x)}, one
for each phase, where ai, i ∈ {1...n}, gives the magnitude of each phase and is used for fitting and
constructing the phase diagram as follows. At step t of our algorithm, the GPs are fitted to the current
observations T , fi(ai|x) = fi(ai|x, T ). To sample the phase at point x, we sample from each of the
GPs at x and take the phase as the maximum over all the phases, giving a phase diagram:

PT (x) = argmax
i

ai, ai ∼ fi(ai|x, T ),P(x) ∈ {1, ..., n}. (1)

To simplify computation, we also define the most probable phase diagram as PT (x) =
argmaxi µi(x|T ), where µi is the posterior mean of fi.

Fitting to observations: As there are more than two phases, we extend standard Gaussian process
classifiers (GPC) Krasser [2020], Rasmussen and Williams [2006] for multiclass observations. Each
phases’s GP fi is individually fitted as a binary GPC in a one-vs-rest setup using p(y(x) = i|ai, T ) =
σ(ai), ai ∼ fi(ai|x, T ). The posterior fi(ai|x, T ) is fitted with the Laplace approximation, with
additional details in Appendix 7.2. Each phase is fitted independently. By using GPCs instead
of directly fitting GPs to binary observations, as in Dai and Glotzer [2020], our proposed method
enhances training stability and naturally incorporates measurement errors. There are other approaches
to fitting multi-class Gaussian process classifiers, such as Galy-Fajou et al. [2019]; however, they are
more complex or slower to fit.

Acquisition function: Following the active learning algorithm, the next point to sample xt+1 is
determined using the acquisition function A(x) that measures how good each point is to sample
and greedily selected with xt+1 = argmaxx A(x) by sampling A(x) over a grid. We propose
utilizing the expected change in the phase diagram after performing an experiment at that point as the
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Figure 1: Visualization of our model internal state on a phase diagram with four phases. (a) Predicted
most likely phase (shaded) with previous observations (crosses), colored by the phase observed. The
recommended point to sample is shown as an orange dot. (b) Acquisition function rating points to
sample. (c) Predicted error (%) of observing different phases from predicted.

Figure 2: (a) A phase diagram of four phases used for testing, with phases shown with shaded color.
Predicted phase diagram after 100 observations from our model (b) and SVC (c), with predicted
phase shaded and observations as crosses colored by observed phase.

acquisition function A(x). A distance function between two phase diagrams is defined as

D(P1, P2) =
1

V

∫
1(P1(x) ̸= P2(x))dx ≈ 1

|G|
∑
x∈G

1(P1(x) ̸= P2(x)), (2)

the fractional area where the two phase diagrams differ. This is numerically approximated by
sampling over a grid of pre-chosen regular points, G in parameters space. We choose A(x) =
E[D(PT , PT ∪{x,ŷ})], ŷ ∼ PT (x) to be the expected distance between the current most probable
phase diagram PT and the most probable phase diagram after sampling at a new point x, assuming
observation ŷ is distributed according to the uncertainty of our model. The expectation averages
over the possible observations ŷ. This acquisition function combines the impact of an observation
on the entire phase diagram and the probability of that observation and balances the exploration of
unknown regions with the refinement of known boundaries. This process is visualized in Figure 1.
Appendix 7.3 describes implementation details of fi and several numerical optimizations, with these
optimizations, each step requires ~25 seconds on an 8-core processor.

3 Synthetic Experiments

Our model is evaluated against Dai and Glotzer [2020] (GPR) and a modified version of Approach 1
in Tian et al. [2020] (SVC) as baselines. Details of these baselines are given in Appendix 7.1. Our
experiments are restricted to k = 2 but our methods can be adapted to higher k.

Two phase problem: Firstly, we evaluated the models on a noisy toy phase diagram of two phases,
P (x1, x2) = 1(x2 > sin(0.5πx1)) where x1, x2 ∈ [−2, 2] represent experimental parameters.
Uniform noise, ϵ ∼ [−0.2, 0.2] was added to x1, x2 every observation to simulate experimental
errors. Models were initialized with 2 observations. Figure 3 and Table 1 show the percent difference
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Figure 3: Fractional error between predicted and true phase diagrams versus number of samples
taken for phase diagrams of (a) two phases and (b) four phases. Shaded area in (a) shows standard
deviation over 6 runs with different random noise, while (b) is noiseless.

between the predicted and true phase diagram (fractional error) vs. the number of observations,
averaged over 6 runs. Our method surpasses the baselines in accuracy after 12 observations.

Four phase problem: Our model and Tian (SVC) were evaluated on a more complex phase diagram
of four spaces inspired by the pressure-temperature phase diagram of materials (Figure 2 (a)). Figure
3 (b) shows the error vs. number of observations and final predictions are shown in Figure 2 (b)
and (c). Our model outperforms the SVC after 30 steps, and nearly perfectly predicts the phase
diagram after 100 steps. SVC predictions are unaligned with observations, which was also observed
in Ref Tian et al. [2020]. Figure 1 visualizes our model’s predicted phase diagram, acquisition
function, and error probability. Figure A1 in Appendix shows the evolution of our models predictions.

4 Application on Heisenberg Model with Antisymmetric Interaction

A motivating application is the exploration of exotic phases in frustrated magnetic systems. One
particular phase that has recently garnered significant attention is magnetic skyrmions.Evans et al.
[2014a], Finocchio et al. [2016], Wang et al. [2022] In the two-dimensional scenario, magnetic
skyrmions manifest as real-space topological structures, formed by localized spin vectors that
smoothly transition from their cores to their peripheries while maintaining fixed helicities. The real-
space topology of a skyrmion is characterized by its skyrmion number Q = 1

4π

∫
m·(∂m∂x × ∂m

∂y )dxdy,
where m is the unit vector of local magnetization and the integral is taken over a two-dimensional
space. To investigate the skyrmion phase, we focus on a Heisenberg model with antisymmetric
interaction on the honeycomb lattice:

H = −J
∑
⟨i,j⟩

Si · Sj −
∑
⟨i,j⟩

di,j · (Si × Sj)−D
∑
i

(Sz
i )

2 − h
∑
i

Sz
i , (3)

where Si represents the classical spin vector at site i with |Si| = 1 and Sz
i is z-component. J > 0 is

the nearest neighbor (NN) ferromagnetic coupling, and di,j = d (z × ui,j) is the NN Dzyaloshin-
skii–Moriya (DM) interaction Dzyaloshinsky [1958], Moriya [1960], where z and ui,j are unit
vectors, respectively perpendicular to the magnetic layer plane and pointing from site i to site j, as
shown in Fig. 4 (a). D > 0 represents easy-axis single-ion anisotropy, and h > 0 is the magnetic
field. Besides the skyrmion phase, we have identified another two distinct magnetic phases in this
system: the spiral phase and polarized paramagnet, in which the spin configuration has magnetic
wave vector q and 0. An example of the spiral phase and skyrmion phase is illustrated in Fig. 4 (b)
(c).

In order to determine the magnetic state configuration, we perform atomistic spin dynamics simulation
by VAMPIRE Evans et al. [2014b] under fixed J = 1 meV, d/J = 0.5 and temperature lowered
to T/J = 10−4. The system size is chosen to be Lx = Ly = 50a with periodic boundary
condition, where a is the lattice constant. In constructing the phase diagram for D/J ∈ (0, 0.5) and
h/J ∈ (0, 0.25) using our algorithm, we start with 6 random initial starting points, then increase the
number of observations to t = 16, 26, 36, 46, 56, 66, 76. The resulting phase diagrams are illustrated
in Fig. 4 (d). As a comparison, the black lines in each plot represent the true phase boundaries
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Figure 4: Phase diagram of Heisenberg model with antisymmetric interaction using our approach.
(a) A schematic of the model Hamiltonian and the microscopic spin configuration for skyrmion.
J and DM represent the spin exchange and DM vector for Dzyaloshinskii–Moriya interaction
respectively. Single-ion anisotropy D and magnetic field h are not shown. (b) and (c) are real-space
spin configurations of (b) spiral and (c) skyrmion phases. Color denotes Sz component (colorbar
shown) and arrows denote the spin direction in (a) and (Sx, Sy) components in (b) and (c). Here (b)
and (c) are obtained at (D,h)/J = (0.056, 0) and (0.028, 0.7), respectively. (d) Phase diagrams as
functions of D/J and h/J , for d = 0.5J and temperature T = 10−4J , obtained after t observations.
Crosses with colors represent points sampled: blue for spiral phase, white for skyrmion phase, and
red for polarized paramagnet. We use purple, green, and yellow to fill out inferred regions of the
three different phases respectively. As a comparison, black lines show the true phase boundaries
obtained by grid sampling. (e) Fractional error as a function of the number of observations.

obtained by grid sampling. The fractional error decreases as the number of observations grows,
becoming smaller than 0.25% after t = 90, as illustrated in Fig. 4 (e).

5 Conclusion and future work

Our proposed method is able to efficiently determine phase diagrams by identifying where to sample
new observations, using a Bayesian approach to quantify the uncertainty. Demonstrated to be effective
for synthetic experiments and for skyrmion phase diagram problem, this approach holds promise to
significantly accelerate the identification of phase diagrams, especially when the dimension of the
parameters space expands. For future work, we would like to extend our approach by improving
how to combine the individual GPC phase diagrams using a single multiclass Gaussian process.
Additionally, we would like to explicitly incorporate known experimental errors into our model.
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7 APPENDIX

Number of observations
Accuracy(%) 10 20 30 40 50

GPC (Ours) 0.094 0.039 0.028 0.030 0.024
GPR 0.139 0.055 0.051 0.052 0.033
SVC 0.071 0.055 0.043 0.047 0.052

Table 1: Accuracy of predicted phase diagrams for binary classification after each algorithm after
different numbers of observations. Results are averaged over 6 runs. The lowest error for each step is
highlighted in bold.

7.1 Baseline Details

We describe the two baselines here. Dai and Glotzer [2020] fit a Gaussian process (GP) is fit to
binary observations y = {−1,+1} and a heuristic acquisition function rates points, x, to select,
A(x) =

√
var(y)/(|E(y)| + ϵ) where var(y), E(y) and ϵ are the GP’s variance, mean and a

numerical stability factor. This acquisition function balances selecting points close to the currently
predicted phase boundary where E(y) ≈ 0 and regions of high uncertainty where var(y) is large.
The numerical stability factor prevents dividing by 0. Similar to our method, at every step, A(x) is
evaluated and the point with the highest value is selected as the next observation. Tian et al. [2020]
presents a method for learning phase diagrams of 2+ phases in Method 2. However, this is not
applicable to our setup since we cannot measure the location of phase transitions directly. Instead, we
use a modified version of Method 1. A support vector classifier is fit to the observations of position
and phase. Phase boundaries are predicted from classification boundaries. For active learning, we
sample points along the phase boundary that have the highest weighted average distance from existing
samples, which acts as a proxy for regions of the highest uncertainty. This is because support vector
classifiers cannot directly quantify prediction uncertainty.

7.2 Fitting the Gaussian process classifier

GPCs are used to model a probabilistic event over space x. At a point x, the probability of observing
a positive outcome is p(y = 1|x) = σ(a(x)), where a(x) is an unknown function, and σ maps a(x)
to a probability. Since a(x) is unknown, so we model a(x) with a Gaussian Process, f . Hence,
p(y = 1|x) =

∫
f(a)σ(a)da. To find the posterior distribution of f(a|x, T ), we can show using

Bayes rule that f(a|x, T ) = σ(a)f(a|T )∫
P (y|a)f(a|T )da

. By estimating f(a|T ) with the Laplace approximation
and forcing the posterior to be Gaussian, it can be shown Rasmussen and Williams [2006] that the
posterior can be written as f(a|x, T ) = N (a|µa, σ

2
a), where µa = K(X,x)T (Y − σ(a)) and

σ2
a = K(x,x)−K(X,x)T (W−1 +K(X,X))−1K(X,x). Here W = diag(σ(a)(1−σ(a)), the

GP kernel is K(), previous observations are X,Y and a can be found numerically.

For a phase diagram of n phases, n GPCs are fitted, one to each phase. Given a dataset of observations
{y1...yt}, the i’th GPC is fitted by mapping the observations to 1 if y = i and 0 otherwise.

7.3 Implementation Details

All of our Gaussian processes, fi(x), use the stationary Matern 5/2 kernel, K(x, x’) = K(r) =

σ2(1 +
√
5r/ρ + 5r2/3ρ2)exp(−

√
5r/ρ), where r is the distance between x and x’. The kernel

parameters are σ, the magnitude of correlation between observations, and ρ, setting the lengthscale
two observations are correlated. These are fitted using maximum likelihood estimation. p(a|y’) is
fitted using the Laplace approximation using GPy SheffieldML [1.10]. For further details about the
GPC and how we fit the GP to observations, we recommend Rasmussen and Williams [2006] and
Krasser [2020].

To find argmaxx A(x), we sample points on a grid (19 × 19 in our experiments). Optimizations
can be made to speed up the search. Firstly, calculating the model’s probability of observing a
phase p(P (x = j)) amounts to finding the probability a Gaussian is greater than multiple different
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Figure A1: Observations and predictions of our model on the synthetic phase diagram of four phases
after different numbers of observations. Observations are shown by crosses. The color indicates the
observed phase.

Phase Q M
Spiral low or 0 low

Skyrmion high high
Paramagnet 0 1

Table 2: Criterion used to assist the determination of three phases

Gaussians, p(P (x) = j) = p(fj(x) > {fk(x)}k ̸=j). This can be done efficiently using the Gauss-
Hermite quadrature instead of random sampling. Secondly, once we have probabilities of observing
each phase, we only need to sample A(x) at points where there is significant uncertainty, we set
A(x) = 0 if the probability of observing any single phase is greater than 90%. Thirdly, since
we are using a local kernel for our Gaussian Process, the effect of new observations is local so
D(PT , PT+1(x)) can be calculated around x instead of the full area.

7.4 The criterion to determine phases of the honeycomb lattice

The phases under different parameter sets can be easily identified by observing real-space spin
textures (fig). We have also calculated some physical quantities to precisely identify the different
phases. We employ the discrete version of topological charge Q that identifies the existence of
skyrmion phase. This version was first introduced in Berg and Lüscher [1981] and used in Yin et al.
[2016]. The calculation of Q starts by triangulating the entire lattice and then counting the solid
angels Ω∆ for each triangle ∆(S1, S2, S3) determined by

exp(i
Ω∆

2
) = ρ−1[1 + S1 · S2 + S2 · S3 + S3 · S1 + iS1 · (S2 × S3)], (4)

where ρ = [2(1 + S1 · S2)(1 + S2 · S3)(1 + S3 · S1)]
1/2, then Q is given by summing over all of

the triangles:

Q =
1

4π

∑
∆

Ω∆. (5)

Here the solid angle Ω∆ ranges from −2π to 2π and the branch cut is the negative real axis when
calculating Ω∆. We also calculate standard magnetization:

M =
1

N

∑
i

Sz
i , (6)

where N is the number of sites in the entire lattice.

In Table. 2 , we show the criterion we use to assist the determination of phases.
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Figure A2: Phase diagrams of the honeycomb lattice as a functon of single-ion anisotropy D/J
(x-axis) and the magnetic field h/J (y-axis) for fixed Dzyaloshinskii–Moriya interaction d/J = 1/2
and temperature T = 10−4J obtained by grid sampling. Black: spiral phase; red: skyrmion phase;
pink: polarized paramagnet. Green lines represent the smoothed phase boundaries.

𝑡𝑡/𝑠𝑠

𝑇𝑇/𝐾𝐾

Figure A3: Temperature as a function of simulation time in our atomistic spin dynamics simulation.

7.5 Phase diagram obtained by grid sampling

In Fig. A2, we show phase diagram of the honeycomb lattice obtained by 21 × 21 grid sampling
and the phase boundaries (smoothed). To simulate the spin configuration of the honeycomb lattice,
we simulate the atomistic spin dynamics using in VampireEvans et al. [2014b]. Starting from a
relatively high temperature, we simulate the evolution of spins using the Landau–Lifshitz–Gilbert
(LLG) equation Lakshmanan [2011], cooling to set temperature we set with custom timesteps. In this
work, we cool the system from T = 20K to T = 10−4J(0.00116K) (Fig. A3), at each temperature
during cooling process, the system evolves 104 steps with each step 10−16s, total 4× 106 steps in
the whole process of a simulation.
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