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Abstract

This paper introduces RACER, the Rational Artificial Intelligence Car-following
model Enhanced by Reality, a cutting-edge deep learning car-following model,
which satisfies partial derivative constraints that are necessary to maintain physical
feasibility, designed to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional car-following models, RACER effectively integrates Rational
Driving Constraints (RDC), crucial tenets of actual driving, resulting in strikingly
accurate and realistic predictions. Notably, it adherence to the RDC, registering
zero violations, in stark contrast to other models. This study incorporates phys-
ical constraints within AI models, especially for obeying rational behaviors in
transportation. The versatility of the proposed model, including its potential to
incorporate additional derivative constraints and broader architectural applications,
enhances its appeal and broadens its impact within the scientific community.

1 Introduction

Advancements in vehicle automation are reshaping the transportation landscape, with a dual impact
on traffic flow and stability. While some research underscores the benefits of automated vehicle (AV)
technologies like enhanced traffic flow (Tan et al., 1998; Wang et al., 2022) and speed harmoniza-
tion (Learn et al., 2017), other studies point to potential drawbacks. Notably, adaptive cruise control
(ACC) vehicles, which are the first generation of AV, could reduce highway throughput (Shang and
Stern, 2021). This underscores the need for accurate car-following models that capture the nuanced
behavior of ACC and AV technologies (Talebpour and Mahmassani, 2015; Shang and Stern, 2021).

Various modeling approaches have emerged to understand vehicle-level dynamics in automated
systems (Talebpour and Mahmassani, 2016; Milanés and Shladover, 2014). Most adapt traditional
car-following models for new automated features. As lower-level automation features like ACC
become widespread, understanding their impact on traffic dynamics becomes crucial (Gunter et al.,
2020; Shang and Stern, 2021).
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Car-following models have seen significant evolution, incorporating technologies like deep learn-
ing (Wang et al., 2017; Mo et al., 2021). These models generally fall into physics-based, data-driven,
and physics-guided AI categories (Mo et al., 2021). Each has its limitations, such as oversimplification
or interpretability issues (Wang et al., 2017; Raissi et al., 2019).

Recently, hybrid models combining physics and data-driven approaches have emerged (Raissi et al.,
2019; Mo et al., 2021). These promising frameworks integrate domain-specific insights with machine
learning capabilities. However, they often overlook Rational Driving Constraints (RDC) (Wilson and
Ward, 2011), critical for understanding realistic driving behavior.

Our work addresses these gaps by integrating RDCs and physical constraints into a neural network-
based car-following model. The aim is to produce a more reliable and interpretable model that
advances the capabilities of existing approaches, setting a foundation for safer autonomous driving
systems. Our contributions are threefold: 1) a novel methodology that embeds RDCs; 2) superior
performance compared to existing models; and 3) an analysis showing compliance with RDC
constraints, a first in machine learning-based car-following models.

2 Modeling Car-following Behavior

This section introduces our neural network-based car-following model, specifically designed to
comply with RDCs and to adapt to various driving conditions. We detail the model architecture, its
training process, and its alignment with the RDC.

A car-following model (CFM) is a function fθ, parameterized by θ, that maps state variables o to
actions a (longitudinal accelerations):

fθ : o→ a (1)

Our model primarily focuses on three variables: spacing s(t), relative speed (the difference between
lead vehicle speed and following vehicle speed) ∆v(t), and the subject vehicle’s velocity v(t),
constituting the state vector o = (s(t),∆v(t), v(t)). The acceleration a(t) is represented as a
second-order ordinary differential equation:

ẍ(t) = fθ(s(t),∆v(t), v(t)) (2)

Here, x denotes position on the road, v(t) = ẋ(t), ∆v(t) = ṡ(t), and a(t) = ẍ(t).

2.1 Deep Learning-Based Car-Following Model with Rational Driving Constraints

Previous machine learning-based car-following models excel in certain metrics like spacing RMSE
but often overlook the integration of RDCs (Panwai and Dia, 2007; Huang et al., 2018; Wang et al.,
2017; Mo et al., 2021; Naing et al., 2022; Ma et al., 2023; Zhu et al., 2018). We propose “RACER", a
model that integrates RDCs to guide the predictions toward safety and realism.

RDCs serve as foundational constraints that embody the behavioral laws to which rational drivers
conform (Wilson and Ward, 2011; Stern et al., 2018). For example, decelerate when the speed is high.
This condition is mathematically represented as a non-positive derivative of acceleration with respect
to speed. These are mathematically expressed as:

da

dv
≤ 0,

da

ds
≥ 0,

da

d(∆v)
≥ 0 (3)

Implementing these constraints in learning-based car-following models is essential as they warrant
that the model’s predictions align with basic safe and rational driving principles. Nonetheless,
enforcing these constraints, especially in intricate models like deep neural networks, is a challenging
task. The proposed solution in the provided code introduces a novel approach to enforce RDCs by
incorporating them into the loss function of the model. The details of the algorithm are presented
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in Algorithm 1. Here, NNseq represents the sequence handling neural network, process(·) signifies
additional processing steps (that could vary depending on the exact network architecture used), and
combine(·) refers to the operation that combines the processed sequence and physical inputs.

Algorithm 1 Enforcing Rational Driving Constraints

1: Input: Sequence of vehicle states Xseq, Physical vehicle states Xphy
2: Output: Predicted acceleration apred, Loss L
3: Zseq ← NNseq(Xseq)
4: Z ′

seq ← process(Zseq)

5: Z ′
phy ← process(Xphy)

6: apred ← combine(Z ′
seq, Z

′
phy)

7: Calculate gradients ∂apred

∂v , ∂apred

∂s , ∂apred

∂r

8: RDCspeed ← ReLU
(

∂apred

∂v

)
9: RDCspacing ← ReLU

(
−∂apred

∂s

)
10: RDCrelative speed ← ReLU

(
−∂apred

∂r

)
11: L ←MSE(apred, atrue) + λ · (RDCspeed +RDCspacing +RDCrelative speed)
12: return apred,L

3 Numerical Experiments

3.1 Data Description

Our analysis employs a principal dataset derived from a sequence of car-following experiments con-
ducted by Gunter et al. (Gunter et al., 2020). This dataset is amassed using a variety of commercially
available vehicles equipped with ACC systems. Each of these ACC-activated vehicles adheres to
a uniform testing procedure, where a leading vehicle traverses at a pre-established speed sequence
for a set duration at each pace. The ACC vehicle, while trailing the lead vehicle, has its ACC active
throughout the duration of the experiment.

3.2 Analysis of the Numerical Experiments

We evaluate four distinct models: Optimal Velocity Relative Velocity (OVRV), Neural Network
(NN), Physics Informed Neural Network (PINN), and Rational Neural Networks (Rational NN).
As recommended by Punzo and Montanino (Punzo and Montanino, 2016), we prefer to compare
model performance using the cumulative inter-vehicle spacing rather than the instantaneous values.
Consequently, we take into account the cumulative error for the temporal evolution of states. Using
our models’ acceleration predictions, we reconstruct position and velocity trajectories, thus the
spacing plot in Figure 1 uses the proposed model as a controller. These trajectories (spacing and
speed profiles) for the following vehicles are derived based on kinematic dynamics, using a time step
of ∆t = 0.1 s—aligned with the experimentally gathered data:

[
s
v

]
t+∆t

=

[
s
v

]
t

+

[
vl − v
apred

]
t

∆t, (4)

Our evaluation indicates that the Rational NN model consistently outperforms all other models, no-
tably excelling in capturing the dynamic behavior of acceleration and deceleration phases. Figures 1a
and 1c substantiate this superiority, with the Rational NN model providing the closest adherence
to actual vehicular behavior. Importantly, the model avoids the overshooting problem commonly
observed in other models, offering a more reliable and safe predictive capability. Our model’s
predictions were assessed for compliance with RDCs across three parameters: velocity (v), spacing
(s), and relative speed (r). Unlike other models that failed in RDC compliance, ours recorded zero
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Table 1: Root Mean Squared Errors for Different Models.
RACER OVRV NN PINN

Acceleration (m/s2) 0.099 0.111 0.115 0.111
Speed (m/s) 0.152 0.173 0.237 0.322
Spacing (m) 0.298 1.485 0.559 0.415

(a) Model Performance -
Acceleration

(b) Model Performance - Spacing
(controller)

(c) Model Performance - Speed
(controller)

Figure 1: Model performance in terms of acceleration, spacing, and speed.

violations, as shown in Figure 2. This underscores the model’s effectiveness and the advantages of
incorporating domain-specific knowledge for realistic and reliable predictions.

4 Discussion & Conclusion

Our experiments highlight that physically constrained neural networks outperform pure neural
network models in handling nonlinear problems and providing more accurate predictions than
conventional models like OVRV. While integrating a physical model like OVRV as a loss function
can sometimes worsen performance, the careful inclusion of RDCs in our model yielded enhanced
accuracy. Not only did our model surpass others in predictive power, but it also generated more
rational and safer driving trajectories, thus enhancing overall vehicle safety.

We have not yet evaluated our model in the context of human driving data. Human driving behavior is
undoubtedly more complex, diverse, and occasionally may not strictly adhere to the RDC. However,
our proposed model, which effectively combines physical-guided AI with car-following principles,
exhibits enormous potential to inform and guide human drivers, thus making driving safer and more
rational. The model also holds promise for testing across a wide range of ACC vehicle driving
scenarios as well as human driving situations. Future research could explore this exciting avenue and
contribute to the progressive journey toward achieving safer, smarter, and more efficient transportation
systems.

(a) RDC Violations (Speed) -
LSTM

(b) RDC Violations (Speed) -
PINN

(c) RDC Violations (Speed) -
RACER

Figure 2: Visual Comparisons of Speed Predictions and Rule Violations for Three Models: a)
LSTM Model, b) PINN Model, and c) RACER Model. The green and red dots denote
predictions conforming to and violating the established rules, respectively.
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