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Abstract

Recent efforts have focused on training neural networks to replace density func-
tional theory (DFT) calculations. However, prior neural network training methods
required an extensive number of DFT simulations to obtain the ground truth (Hamil-
tonians). Conversely, when working with limited training data, deep learning mod-
els often exhibit increased errors in predicting Hamiltonians and band structures for
testing data. This phenomenon carries the potential risk of yielding inaccurate phys-
ical interpretations, including the emergence of unphysical branches within band
structures. To address this challenge, we introduce a novel deep learning-based
method for calculating DFT Hamiltonians, specifically designed to generate accu-
rate results with limited training data. Our framework not only employs supervised
learning with the calculated Hamiltonian but also generates pseudo Hamiltonians
(targets for unlabeled data) and trains the neural networks on unlabeled data. We
compare our results with those obtained using the state-of-the-art method, which
trains neural networks using atomic structures as inputs and DFT Hamiltonians
as targets. We demonstrate the superior performance of our framework compared
to the previous approach on various datasets, such as MoS,, BisTes, HfO5, and
InGaAs.

1 Introduction

Over the past years, there have been tremendous efforts to train a neural network, to replace density
functional theory (DFT) calculation [[14} 24, (8123} [11} 25]]. While previous research has focused on
individual physical properties [6} 2 22| [7], such as charge density and band structure, applying deep
learning to the DFT Hamiltonian itself is a critical and challenging task [8]. When attempting to
use neural networks to model the relationship between material structure and the DFT Hamiltonian
for large-scale material systems, challenges arise due to the exponential growth in the number
of independent variables and the dimensions of the Hamiltonian matrix. To address this issue,
a comprehensive deep learning approach for DFT Hamiltonians was introduced under the name
DeepH [14]. This framework was specifically designed to investigate crystalline materials by
employing a message-passing neural network. The complex challenges associated with the inherently
large dimensions and covariance concerns of the DFT Hamiltonian matrix were effectively resolved
by incorporating locality principles. These included the utilization of local coordinates, localized
basis transformations, and orbitals localized as basis functions. The DeepH framework consistently
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Figure 1: The neural network structure consisting of blocks such as embedding and interaction.

exhibited exceptional accuracy, not only in constructing the DFT Hamiltonian but also in computing
various physical properties related to band structures and wavefunctions.

Despite these efforts in previous studies, it is still overlooked that more than hundreds of DFT
simulation results are required to train neural networks. When the model learns from an insufficient
quantity of training data, it exhibits elevated errors in Hamiltonian and band structure predictions. In
such instances, there exists a potential hazard of yielding erroneous physical interpretations, such as
the formation of unphysical branches. This phenomenon carries notable implications, not only for
the accuracy of DFT predictions but also for their application in transport simulations. In this work,
we propose a novel framework for training a neural network with a limited number of training data
(DFT simulation results). To achieve greater precision with a smaller training dataset, we introduce
a method that incorporates unlabeled training data into the learning process. Our approach entails
the generation of pseudo Hamiltonians for various atomic structures, employing them as targets for
unlabeled data during training. This method offers the prospect of significantly reducing the expenses
associated with obtaining training data.

2 Preliminaries

Neural Network Hamiltonian. In materials science, graph neural networks (GNNs), especially
the Message-passing neural network (MPNN) variant, model molecular properties by graphically
representing atomic connections and facilitating atomic interaction through node-based information
aggregation. Exploiting MPNNs’ benefits, they have been utilized in neural network potentials for MD
simulations [4} 3], predicting electron charge density in DFT [[10], and neural network Hamiltonians
(NNH) in DFT [[14]. The NNH provides an efficient alternative to traditional DFT Hamiltonians,
sidestepping the Kohn-Sham equations, which facilitates more streamlined evaluations in areas like
non-equilibrium green’s function method [20] for semiconductor devices and comprehensive atomic
structure analysis.

Semi-supervised Learning. Deep neural networks often excel through supervised learning, relying
on labeled datasets. However, the benefits of using larger datasets come with significant costs due
to the human effort required for labeling. Semi-supervised learning (SSL) addresses this challenge,
reducing reliance on labeled data by leveraging unlabeled data. Obtaining unlabeled data is typically
less labor-intensive, making SSL cost-effective. This has led to various SSL techniques tailored for
deep neural networks [[19, 1, 9]]. Among these techniques, we utilize the Pseudo-label method [13]],
which incorporates pseudo labels for unlabeled data during training. Inspired by these previous
efforts, we integrate SSL into neural network training by generating pseudo Hamiltonians to leverage
unlabeled data (input data for which we have not performed DFT simulations). There have been
attempts to apply SSL in the field of molecular dynamics [15], but as far as we know, there are no
cases of applying SSL to neural network training that predicts the DFT Hamiltonian that includes
information about various physical properties. Therefore, this new approach provides a novel
viewpoint in the field of DFT Hamiltonian neural network training.



Algorithm 1 Overall process of our framework

Input: Labeled data = and their target Hamiltonians H, unlabeled data u, model F, initial step for

semi-supervised learning I, pseudo Hamiltonian generation step s € (Z,. .., S), trainging weight o,
number of epoch e € (1,..., E) and mean squared error loss [.
fore <~ 1to E do
h= F (z.) > predict Hamiltonian for labeled data
ife = sthen
F(u.) — H > pseudo Hamiltonian generation for unlabeled data
continue
end if
if e > I then
W = F (ue) > predict Hamiltonian for unlabeled data
end if
end for
Ls=1I(H,h) > calculate supervised loss
Ly = I(H, 1) > calculate unsupervised loss
return Ls + oLy > calculate the total loss £ from x and u
3 Methods

Data Preparation. The data preparation involves three steps: atomic structure generation, DFT
Hamiltonian computation, and Hamiltonian transformations. The first two steps utilize the Vienna ab
initio simulation package [12] and OpenMX software package [[16]], incorporating PBE exchange-
correlation energy functional [17]] and norm-conserving pseudopotentials [21]]. Using the Wigner
D-matrix, Hamiltonian matrices are transformed covariantly [14]]. Datasets were secured for four
materials: MoS2 (sourced from [5]]; 500 configurations of 75 atoms each after 300K relaxation;
$3p2d2 orbital basis for Mo and s2p2d1 for S), Bi2Te3 (acquired through [3]]; 256 configurations of
90 atoms each; s3p2d2 orbital basis for Bi and Te), HfO2 (monoclinic structure with 96 atoms; 500
configurations from 1500K to 300K; s2p2d1 orbital basis for Hf and s2p2 for O), and InGaAs (initial
trigonal structure of 108 atoms; 420 configurations from 600K to 300K; s2p2d2 orbital basis for In,
Ga, and As).

Message-passing Neural Network. In the MPNN, vertices v; denote atoms and edges e;; represent
atom pairs. The initial values for these vertices and edges are derived from the embeddings of the
atomic number A; and distances |r;;|, respectively. This initialization is defined in Eq. , where ¢,,
and J act as parameters governing the Gaussian basis [[18]]. Following this initialization, the vertices
and edges are updated: the tensor product of vertices v!, v§ (¢ is the number of update), and edges e! o
coupled with spherical harmonics S(7;;), generates a message m?’l through message function M.
This message, encapsulating neighboring atom information, is then integrated with existing vertex or
edge data via the update function Uy, as described in Eq. (T).
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Following multiple updates through multilayer layers, Hamiltonian elements are computed using
the Wigner-Eckart layer and symmetry-aligned features are managed with an Equivariant Neural
Network (ENN), transforming them into vector components. Our framework has been applied to the
state-of-the-art model, DeepH-E3 [5]], which incorporates the methodologies previously discussed.
The neural network architecture used for learning is as shown in Figure[I] We used SILU or Sigmoid
as the activation functions, Adam as the optimizer, starting with a learning rate of 0.005.

Semi-supervised Learning. As illustrated in Algorithm |1} we utilize both labeled data x and
unlabeled data w to train the neural network. Before the initial step I, only the supervised loss L is
applied. For each pseudo Hamiltonian generation step s, we create pseudo Hamiltonians to use as
targets for the unlabeled data. As the learning process advances, we re-generate increasingly accurate



Hamiltonian error (x10~° eV?) Band structure error (x1072 eV)

# of labeled data 10 20 30 10 20 30
Method baseline ours Dbaseline ours baseline ours baseline ours baseline ours baseline ours
MoS, 14.2 3.94 5.40 2.36 2.97 1.64 2.52 1.39 1.89 1.19 1.49 1.20
BiyTes 9.43 3.20 3.99 1.97 2.54 1.48 4.21 2.00 2.17 1.61 1.68 1.27
HfO, 9.80 4.79 3.99 291 2.54 2.36 8.06 5.79 3.97 3.80 2.03 2.02
InGaAs 11.0 6.53 6.49 5.25 5.50 4.99 4.59 243 1.04 1.29 1.62 1.49

Table 1: Average error of the (left) Hamiltonian and (right) band structure. We compared our method
with DeepH-E3 [5]]. The best results are indicated in bold for each case. We used unlabeled data
equal to 10 times the number of labeled data for neural network training.

— DFT == baseline

Figure 2: Band structures of MoSs, BisTes, HfO5, and InGaAs (from left to right) calculated by the
baseline (blue dashed lines), our method (red doted lines), and DFT results (balck solid lines).

pseudo Hamiltonians. After the initial step /, we introduce unsupervised loss £y, by computing
the loss between the pseudo Hamiltonian H and the predicted Hamiltonian /2’ for unlabeled data.
However, pseudo Hamiltonians generated in the early epochs, which have not been sufficiently
learned yet, contain a significant amount of uncertainty. Therefore, we set « relatively low in the
early epochs and increase it as learning progresses. We use the total loss as follows:

L=~Ls+aly. 3

4 Results

For each of the systems, we assessed the Hamiltonian and band structure errors by comparing our
method to the state-of-the-art method, DeepH-E3 [5]. Table E] demonstrates that our framework
outperforms the baseline method on various material datasets, particularly when a smaller number
of labeled data is used for training. Empirically, a Hamiltonian error close to 3 x 10~° is deemed
accurate. However, as depicted in Figure [2] there are instances where further error reduction is
necessary, even within this range. Due to varying standards for accurate Hamiltonians across datasets,
our emphasis was on minimizing Hamiltonian error by leveraging unlabeled data alongside labeled
data. As depicted in Figure[2] when limited labeled data is employed, the baseline method exhibit
inaccurate band structures or even generate unphysical branches, potentially leading to erroneous
physical interpretations. In contrast, our framework, which effectively incorporates unlabeled data
in neural network training, addresses this issue. Consequently, our framework can be employed in
scenarios where neural networks must be trained with limited data.

We conducted ablation studies, varying the hyperparameters used for neural network training. Figure
[3l(a) shows that the Hamiltonian error decreases as more unlabeled data are used. This supports our
argument that unlabeled data should be used to generate more accurate Hamiltonians. Figure [3}(b)
shows that the Hamiltonian error decreases as the initial step I that generates the pseudo Hamiltonian
for the first time becomes smaller and the pseudo Hamiltonian is updated more frequently. We also
verified the effect of the training weight «, which determines how much the influence of unlabeled
data is reflected in training, in Figure (c). The results indicate that in earlier epochs, when the
neural network has not been sufficiently trained, it is more likely to generate a less accurate pseudo
Hamiltonian. Therefore, it is best to start with a small « and gradually increase it. We verified that
gradually increasing « from 0.1 to 0.4 yields better performance compared to a constant o on BisTeg
dataset.
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Figure 3: Hamiltonian error measured while varying (a) the number of unlabeled data used in neural
network training (b) the initial pseudo Hamiltonian generation step I and the re-generation step size
(c) the training weight a.

5 Discussion

Current neural network training approaches to replace DFT calculations are based on the assumption
that a substantial number of DFT simulation results must be acquired for learning. However, when
dealing with a limited amount of training data, there exists a risk of obtaining distorted results in the
subsequent physical analysis. To address this challenge, we introduce a framework that mitigates the
limitations arising from insufficient training data. We achieve this by incorporating semi-supervised
learning techniques into neural network training. These methods have already demonstrated sig-
nificant advancements in computer vision tasks, and our framework has also exhibited enhanced
performance across various datasets.

6 Broader Impact

The exploration of neural networks for predicting physics-based simulations or experimental results
remains a subject of ongoing research. However, there are scenarios where access to extensive
simulations or conducting experiments can be limited due to various constraints, including resource
limitations or high costs. In such situations, it becomes imperative to achieve reliable and meaningful
results using a limited amount of training data. Our framework offers a versatile solution that can be
applied effectively to a wide range of examples in these circumstances.
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