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Abstract

Calculations of the strong nuclear interactions, encoded in the theory of Quantum
Chromodynamics (QCD), are extraordinarily computationally demanding. In
particular, the Monte Carlo integration used in lattice field theory calculations in
this context suffers from severe signal-to-noise challenges. Complexifying the
integration manifold with the complex contour deformation method reduces the
variances of observables while guaranteeing the exactness of the results. In this
work, we use convolutional neural networks to parametrize the deformed manifolds
and demonstrate orders-of-magnitude reduction in the variance of a key observable
(the Wilson loop) in a simplified model of QCD in three spacetime dimensions.

1 Introduction

Quantum chromodynamics (QCD) is the theory of the strong force between quarks and gluons which
underpins nuclear physics as we know it today. Solving the theory analytically in the low energy
regime relevant for nuclear physics is infeasible. Instead, QCD can be formulated on discretized
spacetime lattices—a method known as Lattice QCD—allowing one to extract predictions from QCD
by numerically computing path integrals with Monte Carlo integration [17]. This is presently the
only ab initio technique available to study QCD. To date, lattice QCD calculations have offered rich
insights into the non-perturbative physics of QCD with many cutting-edge results available [9, 19].

In lattice QCD calculations, physical quantities are estimated from the Monte Carlo integration of
path integrals with samples drawn from probability density distributions of discretized QCD fields.
Despite the tremendous success of this paradigm, the notorious signal-to-noise problems in Monte
Carlo estimates have set the limits on the precision of many lattice QCD results. More concretely,
let ⟨·⟩ denote the expectation value and Var[·] the variance. The signal-to-noise ratios (S/N ) of
many physical observables O(l) characterized by some geometric scale l are expected to decay
exponentially as [20, 22]

S/N [O(l)] :=
|⟨O(l)⟩|√
Var[O(l)]

∼ e−cl, (1)

where c is a constant. Exponentially more Monte Carlo measurements are thus needed for physics
observables at large l to reach the same statistical precision as at small l. Precisely constraining
long-distance physics is one of the most significant challenges facing lattice calculations, including
for quantities of key current importance such as the muon g − 2 [10], in which tensions between
experimental and theory results may provide a hint of new physics. Solving or alleviating the problem
would thus open doors to many more precise calculations in the future.
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To alleviate the signal-to-noise problem in the Monte Carlo integration of path integrals, we apply
the complex contour deformation technique based on the Cauchy theorem to deform the integration
manifold to complex planes. In doing so, the expectation values remain unchanged and unbiased
while the variances vary. Neural networks can then be trained by unsupervised learning to efficiently
locate the manifolds that minimize the variances of desired observables, thereby improving the
signal-to-noise ratio in equation (1).

In this work, we demonstrate for the first time how to construct and train neural networks to find the
deformed integration manifolds that reduce the variances of Wilson loops by orders of magnitude
in the three-dimensional SU(2) lattice gauge theory. Wilson loops are key observables that probe
the confinement nature of QCD, while the SU(2) lattice gauge theory is a toy model that shares
many characteristics with QCD. The method we present here strictly improves the previous method
presented by Detmold et al. [14, 15] by relaxing the open boundary condition requirement and
generalizing the method to higher spacetime dimensions. In addition, we present a transfer learning
scheme that allows us to generalize the learned deformed manifolds from one lattice geometry to
another which provides a pathway towards scaling the method for larger lattice volumes that are
necessary for realistic lattice QCD calculations.

Related works Detmold et al. [14, 15] first applied the complex contour deformation technique with
machine learning techniques to reduce the variances of Wilson loop observables on two dimensional
scalar, U(1), and SU(N) lattice gauge theories. References [1–8, 12, 13, 21] applied similar
ideas to reduce the severity of sign problems in many lattice models. Alexandru et al. [8] wrote a
comprehensive review on the contour deformation technique and its applications to lattice calculations.

2 SU(2) lattice gauge theory in three dimensions

The three-dimensional SU(2) lattice gauge theory is defined on a three-dimensional regular grid with
dimensions L0 ×L1 ×L2. The degree of freedom in this theory is the gauge link Uµ(x), which is an
SU(2) matrix that is associated with a lattice point x = (n0, n1, n2), ni ∈ [0, 1, ..., Li−1], i = 0, 1, 2,
and direction µ = 0, 1, 2. Here we use periodic boundary conditions in all directions such that
Uµ(x) = Uµ(x+ Lν ν̂) for ν = 0, 1, 2.

Wilson loops of side lengths τ , Wµν,τ (x) ∈ SU(2), encoding information about the confining
potential, are defined as

Wµν,τ (x) :=

τ−1∏
i=0

Uµ(x+ iµ̂)

τ−1∏
j=0

Uν(x+ τ µ̂+ jν̂)

τ−1∏
k=0

U−1
µ (x+ kµ̂)

τ−1∏
l=0

U−1
ν (x+ lν̂). (2)

The expectation values of any lattice observable O[U ] defined in terms of the set of gauge links U are
given by the path integrals on the lattice as

⟨O⟩ := 1

Z

∫
d[U ]e−S[U ]O[U ] =

1

Z

∫ (∏
x,µ

dUµ(x)

)
e−S[U ]O[U ], Z :=

∫
d[U ]e−S[U ]. (3)

The path integrals integrate over all gauge link degrees of freedom on a given lattice geometry, and
the normalized Haar integration measure dUµ(x) naturally defines integration on the SU(2) group
manifold of link Uµ(x). The action S[U ] ∈ R encodes the dynamics of the theory by specifying the
integration weights and is given by

S[U ] := −β

4

∑
x

2∑
µ=0

2∑
ν=µ+1

Tr
(
Pµν(x) + P−1

µν (x)
)
, (4)

where β is a constant and Pµν(x) := Wµν,τ=1(x) is the one-by-one Wilson loop, or ‘plaquette’. This
high-dimensional integral is typically approached by Monte Carlo sampling over configurations of
link variables according to the probability density e−S[U ]/Z. The sample mean of the observable
measured on these Monte Carlo samples then gives an estimate of the expectation value in equation (3)
with an associated sample variance that quantifies the error.
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3 Model and loss function

Here we aim to decrease the variance of the observable ⟨ReWτ ⟩ := ⟨Re(W01,τ (x = 0))00⟩ which
contains all the information about the Wilson loop of size τ -by-τ . The subscript denotes the 00
component of the SU(2) matrix. The signal-to-noise ratio of ReWτ decays exponentially as the
area A = τ2 increases. To mitigate this issue with the complex contour deformation technique,
we first introduce a parametrization of the SU(2) matrices and rewrite the path integrals in terms
of integration over real parameters. We use the parametrization of SU(2) matrices introduced
by Bronzan [11],

Uµ(x) =

(
sin
(
θµ(x)

)
eiϕ1,µ(x) cos

(
θµ(x)

)
eiϕ2,µ(x)

− cos
(
θµ(x)

)
e−iϕ2,µ(x) sin

(
θµ(x)

)
e−iϕ1,µ(x)

)
, (5)

where θµ(x) ∈ [0, π/2] and ϕi,µ(x) ∈ [0, 2π), i = 1, 2. In this parametrization, the normalized
Haar measure takes the form dUµ(x) = (1/4π)dθµ(x)dϕ1,µ(x)dϕ2,µ(x) sin(2θµ(x)) and the path
integral can be written as an iterated integral over these real parameters on their respective domains.

The general idea for using the complex contour deformation to improve signal-to-noise ratios is as
follows: given an integral over some real manifold M ⊂ Rn for some n, we can continuously deform
M to M̃ ⊂ Cn by complexifying the variables. Then according to the Cauchy theorem, the integral
value evaluated on M̃ remains unchanged if the integrand is holomorphic and the boundaries of M
and M̃ are compatible. A proof is detailed by Alexandru et al. [8]. ⟨ReWτ ⟩ is unchanged under the
deformation since the integrand in equation (3) is holomorphic and taking the real part commutes with
taking the expectation value; on the other hand, the variance Var[ReWτ ] = ⟨(ReWτ )

2⟩ − ⟨ReWτ ⟩2
is not holomorphic and can be different on different manifolds.

In this context, the role of the machine-learned model is to define a deformed manifold as a map
Ũ [U ] between the original and complexified variables. Here we investigate models that generate
constant deformations [14, 15]

θ̃µ(x) = θµ(x), (6)

ϕ̃i,µ(x) = ϕi,µ(x) + i∆i,µ(x), (i = 1, 2). (7)

Only the ϕ angles are deformed because periodic parameters can be shifted in the imaginary direction
by constants without violating the Cauchy theorem as shown by Detmold et al. [14, 15]. The new
deformed integral can be evaluated by computing ⟨ReQτ ⟩, where Qτ [U ] := e−S[Ũ [U ]]+S[U ]Wτ [U ]
is the deformed observable.

The shift field ∆i,µ(x) ∈ R can be optimized to minimize the variances of ReQτ . In particular, the
loss function for Wilson loops with a side length τ is the unbiased estimator of the non-holomorphic
part ⟨(ReQτ )

2⟩ of the variance of Qτ ,

Lτ =
1

n− 1

n∑
i=1

(ReQτ [U
(i)])2, (8)

where {U (1), · · · , U (n)} is the mini-batch of uncorrelated U ’s sampled according to the probability
density defined in equation (3).

4 Experiment details and results

The goal of the unsupervised learning task is to find the shift field ∆i,µ(x) that minimizes the
variance of ReQτ . However, due to the limited expressivity of the constant deformation to represent a
deformed manifold, we make use of a key symmetry of the action (gauge symmetry) in equation (4) to
reformulate the problem in a way that is suitable for constant deformation. In particular, a set of gauge
links can always be fixed to the identity matrix I under suitable gauge symmetry transformations
as long as those links do not form any closed loops. We exploit this freedom to fix the gauge links
according to

U0(n0 < L0 − 1, n1 = 0, n2 = 0) = U1(n0, n1 < L1 − 1, n2 = 0)

= U2(n0, n1, n2 < L2 − 1) = I, (9)
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Figure 1: Schematic plots of the U-net (top) and the convolutional neural network for transfer learning
(bottom). The widths of boxes show the channel dimensions. “Conv” includes the convolution with a
3-by-3 kernel, batch normalization layer, and ReLU activation function; “Down-conv” down-samples
the lattice with a stride-2 convolution and a 3-by-3 kernel; and "Up-conv" up-samples the lattices
with a stride-2 transposed convolution and a 2-by-2 kernel.

which empirically yields in the best results for the variance of ReQτ in the following.

In this work, we perform experiments on three different lattice geometries: 83, 163, and 323. For
the 83 lattice, we parametrize the shift field ∆i,µ(x) with U-nets introduced by Ronneberger et al.
[23]. The input to the U-net is the concatenation of two three-channel binary masks: the first mask
denotes which links Uµ(x) (µ = 0, 1, 2) form the Wilson loops on the lattice and the second mask
denotes which links are fixed to I in equation (9). Together they form the six-channel input. The
output also has six channels representing the i = 1, 2 and µ = 0, 1, 2 indices of ∆i,µ(x). The details
of the U-net are depicted in figure 1.

For the 163 and 323 lattices, we generate the shift fields with another convolutional neural network
(CNN) that takes the trained shift fields for ReQτ on lattices of size L× L× L as inputs to generate
shift fields for ReQ2τ on lattices of size 2L × 2L × 2L. This is because training directly on 323

lattices with U-nets requires a large number of training samples and iterations. We can instead
first train this CNN to transfer shift fields from 83 to 163 lattices, and then fine-tune this pretrained
network to transfer shift fields from 163 to 323 lattices. We empirically find that this training scheme
dramatically decreases the number independent samples and iterations needed for convergence. The
details of this network are depicted in figure 1.

All Monte Carlo samples are uncorrelated and generated using the Hamiltonian Monte Carlo algorithm
with Chroma [16]. We trained these CNNs respectively using 1.5× 105, 1.1× 105, and 2.4× 104

Monte Carlo samples for the 83, 163, and 323 lattice geometries, and evaluated the performance on
500 Monte Carlo samples in each case. We fix β = 3.75 defining the action S[U ]. Training is done
with the Adam optimizer [18] using one compute node with eight NVIDIA A100 GPUs. The training
time for each network is few node-hours. The results are shown in figure 2. The variances of the
deformed Wilson loops are improved by orders of magnitude for large areas.

5 Conclusion and outlook

In this work, we have shown for the first time how to construct, train, and scale CNNs to parametrize
constant manifold deformations to enhance the signal-to-noise ratios of Wilson loop observables by
orders of magnitude in a lattice gauge theory in three dimensions. These results were possible despite
restricting to the simple constant deformations described in equation (7). It would be natural to
further improve these results by consider a larger class of deformations, for example by allowing field-
dependent functions ∆i,µ(x) or allowing the θµ(x) variables to be deformed. Exploring alternate or
partial gauge-fixing schemes beyond the choices considered during this study may also significantly
further reduce the observable variances.
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Figure 2: Variance improvement factors as a function of Wilson loop areas evaluated on the test
dataset. The variance improvement factor is defined as Var(ReWτ )/Var(ReQτ ) where ReWτ is
the original Wilson loop observable and ReQτ is the machine-learned observable. The results
demonstrate significant variance reductions of the machine-learned observables compared to the
original one. For example, the improvement factor for Wilson loops with an area of 28× 28 = 784
(the largest Wilson loops shown in this figure) is about 3× 103. This means that for a given target
statistical precision of the ⟨ReWτ ⟩ estimate, we need 3× 103 times more uncorrelated Monte Carlo
samples to achieve the same precision if we use the ⟨ReWτ ⟩ estimate.

This method can be easily applied to SU(3) lattice gauge theory in four dimensions as is necessary
for QCD calculations, and its success in this setting is currently under investigation. While the
total efficiency of this method depends on the tradeoff between the optimization cost and cost to
directly generate samples, if results with a similar magnitude of improvement are achieved for
QCD calculations, it would almost certainly result in a net improvement in the efficiency of many
measurements. As statistical precision limits all aspects of such calculations, improving the precision
of available results will likely unlock significant new physics insights.

Acknowledgments

WD, YL and PES are supported in part by the U.S. Department of Energy, Office of Science,
Office of Nuclear Physics, under grant Contract Number DE-SC0011090 and by the National
Science Foundation under Cooperative Agreement PHY-2019786 (The NSF AI Institute for Artificial
Intelligence and Fundamental Interactions, http://iaifi.org/). WD and PES are additionally
supported by the U.S. Department of Energy SciDAC5 award DE-SC0023116. PES is additionally
supported by the Early Career Award DE-SC0021006 and by the Simons Foundation grant 994314
(Simons Collaboration on Confinement and QCD Strings). GK is supported by the Schweizerischer
Nationalfonds through grant agreement no. 200020_200424. MLW is supported by Fermi Research
Alliance, LLC under under grant Contract Number DE-AC02-07CH11359 with the U.S. Department
of Energy, Office of Science, Office of High Energy Physics.

References
[1] G. Aarts. Lefschetz thimbles and stochastic quantization: Complex actions in the complex

plane. Phys. Rev. D, 88(9):094501, 2013. doi: 10.1103/PhysRevD.88.094501.

[2] A. Alexandru, G. Basar, and P. Bedaque. Monte Carlo algorithm for simulating fermions on
Lefschetz thimbles. Phys. Rev. D, 93(1):014504, 2016. doi: 10.1103/PhysRevD.93.014504.

[3] A. Alexandru, G. Basar, P. F. Bedaque, G. W. Ridgway, and N. C. Warrington. Sign problem
and Monte Carlo calculations beyond Lefschetz thimbles. JHEP, 05:053, 2016. doi: 10.1007/
JHEP05(2016)053.

5

http://iaifi.org/


[4] A. Alexandru, G. Basar, P. F. Bedaque, S. Vartak, and N. C. Warrington. Monte Carlo Study
of Real Time Dynamics on the Lattice. Phys. Rev. Lett., 117(8):081602, 2016. doi: 10.1103/
PhysRevLett.117.081602.

[5] A. Alexandru, G. Basar, P. F. Bedaque, and G. W. Ridgway. Schwinger-Keldysh formalism on
the lattice: A faster algorithm and its application to field theory. Phys. Rev. D, 95(11):114501,
2017. doi: 10.1103/PhysRevD.95.114501.

[6] A. Alexandru, P. F. Bedaque, H. Lamm, and S. Lawrence. Deep Learning Beyond Lefschetz
Thimbles. Phys. Rev. D, 96(9):094505, 2017. doi: 10.1103/PhysRevD.96.094505.

[7] A. Alexandru, P. F. Bedaque, H. Lamm, and S. Lawrence. Finite-Density Monte Carlo
Calculations on Sign-Optimized Manifolds. Phys. Rev. D, 97(9):094510, 2018. doi:
10.1103/PhysRevD.97.094510.

[8] A. Alexandru, G. Basar, P. F. Bedaque, and N. C. Warrington. Complex paths around the sign
problem. Rev. Mod. Phys., 94(1):015006, 2022. doi: 10.1103/RevModPhys.94.015006.

[9] Y. Aoki et al. FLAG Review 2021. Eur. Phys. J. C, 82(10):869, 2022. doi: 10.1140/epjc/
s10052-022-10536-1.

[10] T. Aoyama et al. The anomalous magnetic moment of the muon in the Standard Model. Phys.
Rept., 887:1–166, 2020. doi: 10.1016/j.physrep.2020.07.006.

[11] J. B. Bronzan. Parametrization of SU(3). Phys. Rev. D, 38:1994, 1988. doi: 10.1103/PhysRevD.
38.1994.

[12] M. Cristoforetti, F. Di Renzo, and L. Scorzato. New approach to the sign problem in quantum
field theories: High density QCD on a Lefschetz thimble. Phys. Rev. D, 86:074506, 2012. doi:
10.1103/PhysRevD.86.074506.

[13] M. Cristoforetti, F. Di Renzo, A. Mukherjee, and L. Scorzato. Monte Carlo simulations on
the Lefschetz thimble: Taming the sign problem. Phys. Rev. D, 88(5):051501, 2013. doi:
10.1103/PhysRevD.88.051501.

[14] W. Detmold, G. Kanwar, M. L. Wagman, and N. C. Warrington. Path integral contour deforma-
tions for noisy observables. Phys. Rev. D, 102(1):014514, 2020. doi: 10.1103/PhysRevD.102.
014514.

[15] W. Detmold, G. Kanwar, H. Lamm, M. L. Wagman, and N. C. Warrington. Path integral contour
deformations for observables in SU(N) gauge theory. Phys. Rev. D, 103(9):094517, 2021. doi:
10.1103/PhysRevD.103.094517.

[16] R. G. Edwards and B. Joo. The Chroma software system for lattice QCD. Nucl. Phys. B Proc.
Suppl., 140:832, 2005. doi: 10.1016/j.nuclphysbps.2004.11.254.

[17] C. Gattringer and C. B. Lang. Quantum chromodynamics on the lattice, volume 788. Springer,
Berlin, 2010. ISBN 978-3-642-01849-7, 978-3-642-01850-3. doi: 10.1007/978-3-642-01850-3.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and
Y. LeCun, editors, ICLR 2015, 2015. URL http://arxiv.org/abs/1412.6980.

[19] A. S. Kronfeld et al. Lattice QCD and Particle Physics. 7 2022.

[20] G. P. Lepage. The Analysis of Algorithms for Lattice Field Theory. In Theoretical Advanced
Study Institute in Elementary Particle Physics, 6 1989.

[21] Y. Mori, K. Kashiwa, and A. Ohnishi. Application of a neural network to the sign problem via
the path optimization method. PTEP, 2018(2):023B04, 2018. doi: 10.1093/ptep/ptx191.

[22] G. Parisi. The Strategy for Computing the Hadronic Mass Spectrum. Phys. Rept., 103:203–211,
1984. doi: 10.1016/0370-1573(84)90081-4.

[23] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In MICCAI 2015: 18th International Conference, pages 234–241. Springer,
2015.

6

http://arxiv.org/abs/1412.6980

	Introduction
	SU(2) lattice gauge theory in three dimensions
	Model and loss function
	Experiment details and results
	Conclusion and outlook

