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Abstract

The calculation of cross sections is of paramount importance in high-energy physics.
Among other steps, this process involves squaring the particle interaction ampli-
tudes, which can be very computationally expensive. These lengthy calculations
are currently done using domain-specific symbolic algebra tools. We demonstrate
that a transformer model, when trained on symbolic sequence pairs, can predict
correctly the squared amplitudes of the Standard Model processes, namely QED,
QCD and EW with an accuracy of 98%, 97% and 95%, respectively, at a speed
that is up to six orders of magnitude faster than current symbolic computation
frameworks. We briefly note some limitations of the model and suggest possible
future directions for this work.

1 Introduction

In high-energy physics, the calculation of a cross section Goldberg (2017)—a measure of the
probability of a given particle-particle interaction—can be an exceedingly complicated task requiring
many mathematical operations, including Lorentz index contractions, Dirac algebra, traces, and
integrals. Moreover, the complexity of these operations increases dramatically with the number of
final state particles and the number of loops in the interactions.

These calculations have been automated in domain-specific symbolic algebra tools such as FeynCalc
Shtabovenko et al. (2020), CompHEP Boos et al. (2004), and MARTY Uhlrich et al. (2021)). In this paper,
we explore the possibility of using a machine learning model to handle these complex calculations.
We use a sequence-to-sequence (seq2seq) model, specifically, a transformer Vaswani et al. (2017),
to symbolically compute the square of the particle interaction amplitude, a key element in calculating
cross-sections. Our aim is to invest time initially in training these models so that, in the long run, we
can perform symbolic calculations much faster than with traditional software tools.1

1Code Repository: https://github.com/ML4SCI/SYMBA_Pytorch
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Figure 1: A Feynman diagram of two incoming electrons e(p1) and e(p2) scattering into two electrons
and a photon.

Figure 2: Amplitude and squared amplitude of the ee → eeγ scattering process.

2 Related Work

Seq2seq transformer-based models Vaswani et al. (2017) have been successfully deployed on a
wide range of tasks including natural language processing OpenAI (2023); Devlin et al. (2018); Ott
et al. (2018); Guan et al. (2020), other applications such as image captioning and medicine Liu et al.
(2021); Devlin et al. (2018); Karpathy and Fei-Fei (2014); Li et al. (2019); Hatamizadeh et al. (2021);
Ji et al. (2020) the current seq2seq state-of-the-art. These models have achieved excellent results in
symbolic calculations in calculus and the symbolic solution of ordinary differential equations Lample
and Charton (2019). Transformers have been used to infer the recurrence relation of underlying
sequences of numbers d’Ascoli et al. (2022) and for symbolic regression Valipour et al. (2021). In
physics, symbolic regression has been applied to classical mechanics problems Cranmer et al. (2019);
Lemos et al. (2022); Udrescu and Tegmark (2019) and to extract optimal observable in the context of
the Standard Model Effective Field Theory (SMEFT) Butter et al. (2021). Furthermore, transformer
model have been used to simplify polylogrithmic functions, which appears in loop calculations
in high energy physics Dersy et al. (2022). In the current work, we take a further step and show
that transformers can accurately encode the mapping from amplitudes to their square averaged and
summed over the particle degrees of freedom.

3 Background

The Standard Model, one of the great intellectual achievements of the 20th century, describes all
known elementary particles and their interactions through three of the four known fundamental
forces, namely, electromagnetic, weak, and strong forces (see, for example, Ref. Goldberg (2017)
Schwartz (2013)). The Standard Model is a Quantum Field Theory (QFT) specified in a mathematical
expression called a Lagrangian. In QFT, the elementary particles are described in terms of quantum
fields in space-time, where each type of particle is associated with a different field. The interactions
among these particles are governed by fields, which are sometimes referred to as force carriers, whose
details are precisely determined by the symmetries imposed on the Lagrangian.
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The Standard Model combines all the quantum field theories that describe the three forces, namely,
the quantum electrodynamics (QED) which describe the electromagnetic interaction, quantum
chromodynamics (QCD) which describe the strong interaction and electroweak (EW) which unifies
electromagnetic and the weak interactions. Furthermore, the Standard Model provides an explanation
for how the elementary particles acquire masses through a mechanism called "Higgs Mechanism".
There is a well-defined procedure to extract from the Lagrangian all the possible particle interactions
of interest, each associated with a mathematical quantity called an amplitude. These amplitudes can
be represented by Feynman diagrams.

Calculating the cross section, for example of the process depicted in Fig. 1 and represented sym-
bolically in Fig. 2, requires computing the squared amplitude and averaging and summing over the
internal degrees of freedom of the particles.

Figure 2 shows one of the “shortest” 2 → 3 tree-level quantum electrodynamics (QED) squared
amplitudes after simplification, where in this process two incoming electrons e(p1) and e(p2) scatter
into two electrons e(p3) and e(p4) and a photon γ(p5). Typical expressions can have hundreds of
terms and the computational time can become a major challenge, especially if higher-order (with
loops) amplitudes are included to render predictions more precise.

The key insight in all the current uses of machine learning for symbolic applications is that many
tasks can be viewed as a natural language processing problem. For example, a system that maps
images to textual summaries of them can be viewed as translating from the language of images to
a natural language. Likewise, algebraic manipulation such as the mapping of amplitudes to their
squared form can be conceptualized as a language translation task. Since this task maps one sequence
of symbols to another it is natural to consider seq2seq models.

4 Dataset

The symbolic sequence pairs, the amplitude and its square averaged and summed over initial and
final particle degrees of freedom, respectively, are generated with MARTY Uhlrich et al. (2021) for
interactions in quantum electrodynamics (QED), quantum chromodynamics (QCD) and electroweak
(EW) Seq. 3. Here, we restrict the scope to 2-to-2 and 2-to-3 particle processes in all the Standard
Model theories at tree-level, 2-to-2 in QED and QCD at one loop order. We consider two approaches:
1) mapping the amplitude to the squared amplitude as shown in Fig. 2, and 2) using the Feynman
diagrams (written as a sequence) as input into the model to predict the squared amplitude. A notable
advantage of the second approach is the Feynman diagram can be written by hand, if desired, without
the need for a domain-specific tool to construct the amplitude.

All expressions are simplified with the Python symbolic mathematics module SymPy Meurer et al.
(2017). We perform the tokenization using torchtext Paszke et al. (2019), that is, the assignment of
an integer to each symbol and the padding of sequences to make them of equal length. Each sequence
is then converted to a vector built from these integers. The amplitudes are tokenized by operator
(tensor) and its indices, while for squared amplitudes we tokenize them by each mass, product of
momenta, weak mixing angle for EW, and numerical factor (for example, 4 ∗m2

e ∗ p1.p2 is three
tokens) as there are a finite number of terms consistent with the physical dimension (in powers of
mass) and conservation laws.

For squared amplitudes coming from loop interactions, there are additional symbols corresponding to
the n-point functions integrals that can be evaluated numerically with other tools such as LoopTools
Hahn and Pérez-Victoria (1999). For practical computational reasons, we exclude expressions longer
than 264 tokens after the simplification which excludes 5%, 26% and 12% of all QED, QCD and EW
(2-to-3) tree-level expressions, respectively. For loop interaction, we exclude expressions longer than
500 which excludes 56%, 51% of all QED, QCD loop expressions. The data are split into three sets:
training, validation and test, 70%, 15% and 15%, respectfully, and we choose a random sample of
500 expression pairs (from the test set) to evaluate the performance of the trained model.

5 Model and Training

The transformer model (see Ref. Vaswani et al. (2017)) consists of an encoder and a decoder. The
encoder embeds the input sequence as a vector in a high-dimensional vector space and encodes the
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position of each token in the sequence. Next a mechanism called multi-head attention computes the
degree to which a given token is related to other tokens. During the training of the model, the decoder
takes the output vector from the encoder together with the target sequence one token at a time and
predicts a sequence, also one token at a time. The transformer without structural modifications is
implemented using Pytorch Paszke et al. (2019). The model has 1− 2 layers and 8 attention-heads,
with 512 embedding dimensions and 2048 latent dimensions. Cross-entropy is used as the loss
function and the Adam optimizer Kingma and Ba (2014) is used with a learning rate of 10−4 and a
batch size of 64− 512. The training was performed for (50− 100) epochs on four NVIDIA A100
Tensor Core GPUs which took about 2− 12 hours.

Table 1: Model performance: sequence accuracy.

Training Sample process Training Size Sequence Accuracy

QED (amplitude) 2-to-2 & 2-to-3 251K 98.6%

QCD (amplitude) 2-to-2 & 2-to-3 205K 97.4%

EW (amplitude) 2-to-2 258K 95.4%

EW (amplitude) 2-to-3 7M 94.4%

QED (diagram) 2-to-2 & 2-to-3 258K 99.0%

QCD (diagram) 2-to-2 & 2-to-3 250K 87.7%

EW (diagram) 2-to-2 259K 96.6%

EW (diagram) 2-to-3 7M 82.3%

QED (diagram) 2-to-2 (Loop) 13K 68.9%

QCD (diagram) 2-to-2 (Loop) 5.5K 60.0%

6 Results and discussion

Table 1 summarizes the performance of the model trained with different data sets. The accuracy of the
predicted symbolic expressions is assessed by taking a random sample of 500 amplitudes (or diagram)
from the test set that have not been used in the training of the transformer model and predicting their
squared amplitudes. The sequence accuracy (one of three measures we explored) is the percentage of
predicted symbolic expressions that exactly match the targets. The results demonstrate that even for
a mathematical problem as complicated as squaring an amplitude, averaging and summing of over
the internal degrees of freedom of particles, and manipulating the result into a meaningful form, it is
possible to encapsulate that domain knowledge in a transformer model. The prediction time is up to
6 orders of magnitudes faster than MARTY for some amplitudes. It is noteworthy that the accuracy
is affected by three factors: data complexity, data size and sequence length. The performance on
QCD amplitude is much higher than on diagrams, which indicates the fact that the complexity in
QCD, which comes from color factors and gluon self-interactions—components not present in QED,
is higher, so expressing the input in Feynman diagram is not sufficient. A similar pattern is observed
in the case of (EW) for 2-to-3 processes, where accuracy is lower when compared to models that rely
on amplitude sequence information. In loop dataset, all of these three factors manifest which explains
the lower accuracy. As there is a strong dependence on data set size, we expect better performance
using a larger training dataset.
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There are several ways to address the issues of data complexity including adding more details about
the interaction, so the input data should encompass a comprehensive range of features, taking into
consideration all complexities of interactions. The data size issue can be solved by including adding
more processes from theories beyond the Standard Model (BSM) which exposes the model to a
greater variety of examples. Longer sequence length expressions can be addressed with variants of
the basic transformer model that exhibit better scaling with sequence length Beltagy et al. (2020).
We leave that to future work. The length of the sequence can be further tuned by adjusting the
tokenization process.

7 Conclusion

Our results demonstrate that a basic transformer model can encode the mapping between a particle
interaction amplitude and its squared amplitude to high accuracy despite the complexity of the
mapping. The accuracy of the transformer model is currently data limited and depends on the data
complexity and sequence length. The results obtained, however, are sufficiently promising to motivate
further work.

8 Acknowledgement

This work was supported in part by the U.S. Department of Energy (DOE) under Awards No. DE-
SC0012447, DE-SC0023713 (SG) and DE-SC0010102 (HP). This research used resources of the
National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under
Contract No. DE-AC02-05CH11231 using NERSC award HEP-ERCAP0025759. (ER) and (NA)
were participants in the ML4SCI 2023 Google Summer of Code program.

9 Broader Impact

The use of transformer models in high energy physics can speed up discoveries. Importantly it doesn’t
raise any big ethical or social concerns, so it’s positive development for advancing our understanding
of high energy physics.
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