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Abstract

The Event Horizon Telescope (EHT) provides an avenue to study black hole
accretion flows on event-horizon scales. Traditionally, fitting a semi-analytical
model to EHT observations requires the construction of synthetic images, which
is computationally expensive. This study presents an image generating tool in the
form of a generative machine learning model, which extends the capabilities of a
variational autoencoder. This tool can rapidly and continuously interpolate between
a training set of images and can retrieve the defining parameters of those images.
Trained on a curated set of synthetic black hole images, our tool showcases success
in both interpolating and generating images, and retrieving the physical parameters.
By reducing the computational cost of generating an image, this tool facilitates
parameter estimation and model validation for observations of black hole systems.

1 Introduction

The Event Horizon Telescope (EHT) is a very long baseline interferometer [Collaboration, 2019a,b]
created to observe black holes on event-horizon scales, making it possible to study the astrophysical
and gravitational processes in the vicinity of black holes [Broderick et al., 2009, Broderick et al.,
2011, Broderick et al., 2014, 2016]. So far, Sagittarius A* [Collaboration, 2022] and Messier 87*
[EHT, 2019] have been imaged, revealing a lot of information about the structure and dynamics of
the accretion disks around these black holes. To gain more information, however, utilizing forward
models is essential as the Physical models are the most interpretable.

EHT data is fit within Bayesian parameter estimation frameworks[Broderick and EHT, 2020]. This
is done by sampling a model likelihood such that the data provides direct posteriors on the model
parameters. Here, to demonstrate our methodology, we concentrate on a particular physical model
called RIAF [Broderick & Loeb, 2006, Pu and Broderick, 2018]; however, our method can be used
for any well-behaved physical model. RIAF is a simple semi-analytical model of the accretion
flow around a black hole that approximates the dynamics of the accretion disk with a thick static
disk. However, generating images with normal methods requires simulations and is computationally
expensive [Broderick and EHT, 2020].

In this paper, we create a rapid and reliable non-linear interpolation tool based on the principles
of generative models in machine learning. This tool, named Autoencoding Labeled Interpolator
Network (ALINet), is a new type of variational autoencoder (VAE) [Kingma and Welling, 2014]
and due the nature of its structure, it is physically interpretable. ALINet, therefore, is a tool that can
retrieve physical parameters from an image. We additionally trained an inverse network that does the
job of ALINet in reverse; it finds the image when physical parameters are given.
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In section 2, we discuss in more detail how a traditional VAE works and then we describe our own
method. As an example, we train ALINet on RIAF images, spanning 5 physical parameters: black
hole spin (a), inclination angle(i), disk thickness (H/R), non-thermal electron density (nnth), and
sub-Keplerian fraction (κ). In section 3, we evaluate how well the network can recover these physical
parameters and we show that the inverse network can faithfully recover the physical parameters when
it is paired with ALINet.

2 Methods

2.1 Variational Autoencoder

A traditional VAE is comprised of an encoder and a decoder. The encoder takes images as input and
encodes them down to a few probability distributions. Samples from these distributions are called
latent variables. Furthermore, the space in which the latent variables live is called the latent space
(for a comprehensive introduction to VAEs, see for example, [Kingma and Welling, 2014]) The goal
of the VAE is to learn how to encode a high-dimensional image to a low-dimensional representation
and learn to reconstruct the image from the latent representation of an image while keeping the latent
space distributions close to the prior distributions. The VAE accomplishes these goals by minimizing
a loss function which is called the Evidence Lower Bound (ELBO) and is shown in Equation 1 (Neal
and Hinton [1998]).

ELBOV AE(ϕ, θ) =− Ez∼qϕ(z |D)[log⟨pθ(D | z)⟩]︸ ︷︷ ︸
reconstruction error

+DKL[qϕ(z |D) || p(z)]︸ ︷︷ ︸
regularization

,
(1)

where ϕ and θ represent the parameters (weights and biases) of the encoder and the decoder, respec-
tively. DKL is the Kullback–Leibler divergence, which is the measure of how close a probability
distribution is to another [Shlens, 2014]. The term containing the KL-divergence is responsible to
keep the latent distributions close to the prior. D is representative of the available data or images, z
denotes the latent space variables or latent parameters, p(z) is the prior, pθ(D|z) is the likelihood
of D occurring assuming the parameters z, qϕ(z|D) is the “surrogate distribution" which the VAE
should learn and make as close to the posterior p(z|D).

The problem with VAEs is that the distributions learned by the autoencoder in the latent space are
not readily interpretable. [Shavlik, 1992, Mahendran and Vedaldi, 2015, Ghahramani, 2015, Ravid
Shwartz-Ziv, 2017]. However, since the difference in the images is caused by the physical parameters,
there should exist a mapping from the latent parameters to the physical parameters.

2.2 Autoencoding Labeled Interpolator Network (ALINet)

In this structure, which we name Autoencoding Labeled Interpolator (or ALINet for short), we stitch
the labels (physical parameters) to the VAE using a new neural network branch connected to the latent
parameters on the decoder side, whose sole job is to find the mapping from the latent parameters to the
physical labels. The loss function has therefore three components this time, as shown in Equation 2.

ELBOALI(ϕ, θ) = ELBOV AE(ϕ, θ) + α×
∑
i

(yi − ŷi)
2

︸ ︷︷ ︸
SSE

(2)

ELBOV AE(ϕ, θ) is the loss function of the traditional VAE described in Equation 1. However, note
that in our model, ϕ still represents the learnable parameters in the encoder, but θ represents all the
learnable parameters in both branches of ALINet decoder. yi and ŷi are the truth and network output
for the physical parameters, and α is the hyperparameter that tunes the strength of the extra term in
the loss function, i.e. how much emphasis is put on predicting the exact physical parameters. Since
the dimensions of the images are significantly bigger than the number of parameters, reconstruction
loss tends to be considerably larger than the parameter SSE loss. α is important to make the sum
squared error (SSE) loss comparable to the reconstruction loss.
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2.3 Inverse Network

The architecture described in subsection 2.2 can retrieve physical parameters given an image. To
generate an image given physical parameters, we train an inverse neural network that learns the
mapping from physical parameters to the latent distributions. These latent distributions then will
be fed to the ALINet decoder to create images. The loss function for this network, therefore, is as
follows:

Loss = α×
∑
i

(µ̂− µ)2 +
∑
i

( ˆlogvar − logvar)2 (3)

Where µ and logvar are the means and natural logarithm of variances of the latent distributions
representing the physical parameters. Variables with hats represent the predictions of the network. α
is a multiplier to adjust the emphasis of the loss function.

3 Experiments/Results

3.1 ALINet: Parameters From Image

We used 160000 RIAF black hole (BH) images for training, 20000 for validation. We chose these
images in such a way that they cover the entire parameter space (look at Table 1 for parameter ranges).
We choose the latent space to be 5-dimensional. We also use max-min normalization to bring the
data to the range [0, 1]. The range of each parameter can be found in table 1. In equation 2 we choose
α = 40000. We train the model for 45 epochs and chose a batch size of 64. We use learning rates
of 10−3, 10−4, and 10−5 each for 15 epochs. In all of our setups, we used the Adam optimizer for
training. [Kingma and Ba, 2017] Training on the Beluga supercomputer [Baldwin, 2012] takes 1 day
to complete. We use 40 CPU cores and 1 GPU for training.

After training, the model is tested with 20,000 testing images. In second row of Figure 1, we plot the
output when ALINet is used to reconstruct 5 randomly chosen images from the test data set. For all
the test images, the difference between the predicted value of black hole image parameters and the
true values given to the simulation can be found in Figure 2. These errors are important and should
be added as systematic errors to any further analyses.

3.2 Inverse Network: Image From Parameters

We use the same dataset as subsection 3.1. We first train the network for 2 epochs with learning rate
of 10−4 and then for another 2 epochs with learning rate of 10−5. In Equation 3 we chose α = 10.
The error of the physical parameters extracted when inverse network (InvNet) + ALINet decoder is
used is shown in Figure 2. These figures and Table 1 show that the 1− σ errors for all the parameters
for both ALINet and inverse model are less than or equal to 2.5%. Furthermore, the third row of
Figure 1, we generate images using InvNet + ALINet. These images are generated by using the
parameter values of the first row of this figure as input to InvNet + ALINet. The second branch of
ALINet also outputs the physical parameter corresponding to each image, which match the input
within a small error margin.

Table 1: Parameter ranges for the RIAF black hole model
a cos i H/R nnth κ

[-0.98, 0.98] [-0.99, 0.99] [0.05 , 2] [0 , 0.05] [0.01 , 1]

4 Conclusions

In this work we improve on a traditional variational autoencoder by adding a second branch to the
decoder which finds the underlying physical parameters that describe an image. Moreover, we train an
inverse network which finds an image corresponding to input parameters. We show that these models
extract the images and parameters with small errors. ALINet and inverse network can be utilized
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Figure 1: 5 random sample images and their reconstructed outputs from the black hole testing dataset.
The number above each image corresponds to the true value of the spin for that image in the first row
and the reconstructed spin value from the second branch of the ALINet decoder for the second row.
In the third row, the images generated by inputting the truth parameter values in ALINet+InvNet,
and the predicted parameters from the second branch of ALINet decoder are shown. All the relevant
physical parameters for each image are displayed in a box in the image.

as interpolation tools in fitting astrophysical models to EHT black hole data to highly constrain the
allowed range of values for the physical parameters in each model.

Even though here we have used a RIAF model as an example, all the methodology is general to any
well-behaved function and can be used for a variety of applications, such as other black hole models
like GRMHDs [Narayan et al., 2012] or in multi-messenger astronomy, e.g. for detecting features in
gravitational wave signals in binary black hole systems [LIGO, 2016].

Acknowledgements

We thank Boris Georgiev and Sebastian Wetzel for helpful comments. This work was supported in
part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the
Government of Canada through the Department of Innovation, Science and Economic Development
Canada and by the Province of Ontario through the Ministry of Economic Development, Job Creation
and Trade. A.E.B. receives additional financial support from the Natural Sciences and Engineering
Research Council of Canada through a Discovery Grant. This research was enabled in part by support
provided by Calcul Québec (www.calculquebec.ca) and the Digital Research Alliance of Canada
(alliancecan.ca).

4



−0.10 −0.05 0.00 0.05

Error in a

0

5

10

15

20

S
ca

le
d

F
re

q
u

en
cy

−0.05 0.00 0.05 0.10

Error in cos i

0

5

10

15

S
ca

le
d

F
re

q
u

en
cy

−0.05 0.00 0.05 0.10 0.15

Error in H/R

0

5

10

15

S
ca

le
d

F
re

q
u

en
cy

−0.006 −0.004 −0.002 0.000 0.002 0.004

Error in nnth

0

200

400

600

S
ca

le
d

F
re

q
u

en
cy

−0.05 0.00 0.05

Error in κ

0

10

20

30

S
ca

le
d

F
re

q
u

en
cy

−0.10 −0.05 0.00 0.05 0.10

Error in a

0

5

10

15

S
ca

le
d

F
re

q
u

en
cy

−0.10 −0.05 0.00 0.05 0.10 0.15

Error in cos i

0

5

10

S
ca

le
d

F
re

q
u

en
cy

−0.1 0.0 0.1 0.2

Error in H/R

0

2

4

6

8

S
ca

le
d

F
re

q
u

en
cy

−0.002 0.000 0.002 0.004

Error in nnth

0

200

400

S
ca

le
d

F
re

q
u

en
cy

−0.075 −0.050 −0.025 0.000 0.025 0.050

Error in κ

0

10

20

S
ca

le
d

F
re

q
u

en
cy

Figure 2: The error of the predicted values by left: ALINet model for 20, 000 test images and right:
inverse network for 20, 000 test parameters. The error is calculated by subtracting the predicted value
for each parameter from the truth value of that parameter, i.e. if X is the parameter in question, we
do Xoriginal −Xreconstructed to obtain the plots.
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