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Abstract

Air pollution is the world’s largest environmental risk factor for human disease and
premature death, resulting in more than 6 million premature deaths in 2019 [1]. It is
challenging to accurately simulate one of the most important air pollutants, ozone
(O3), particularly at scales relevant for human health impacts. Meanwhile, the
observing network coverage is largely limited. Therefore, the drivers of regional
and global ozone trends at these scales remain largely unknown. In this study, we
employ a 2-D Convolutional Neural Network (CNN)-based U-Net architecture that
predicts surface ozone residuals (i.e., model bias) in Jet Propulsion Laboratory’s
(JPL) atmospheric composition modeling system. We demonstrate the potential of
this technique in North America and Europe, highlighting its ability to better capture
physical model residuals compared to a traditional machine learning method. We
also assess the impact of incorporating land use information from high-resolution
satellite imagery to improve model estimates. Importantly, we discuss how our
results can be the first steps to improving our scientific understanding of the factors
impacting ozone bias that can be used to guide environmental policy.

1 Introduction

The NASA’s 2017-2027 Decadal Survey for Earth Science and Applications from Space stated
its priority to define "What processes determine the spatio-temporal structure of important air
pollutants and their concomitant adverse impact on human health, agriculture, and ecosystems?"
[2]. However, modeling air pollution to date has been challenging due to the complex influences
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Figure 1: airPy GEE extraction over Australia. Top to bottom datasets: VIIRS nightlight, MODIS
landcover, World Population and MODIS Burnt Pixel data. r represents the buffer radius extent
selected by the user to match the desired grid size.

from atmospheric chemistry, emissions, planetary boundary layer dynamics and unknown non-linear
processes. Recently, the Multi-mOdel Multi-cOnstituent Chemical data assimilation (MOMO-
Chem) for tropospheric chemical reanalysis was developed at JPL to integrate various observational
information with a chemical transport model to simulate atmospheric composition distributions,
including near-surface air pollutants [3]. MOMO-Chem has made significant progress in reproducing
large-scale ozone estimates. Nevertheless, there is a gap in finer-scale ozone analysis and drivers of
physical model bias relevant for human health assessments.

In this work, we investigate the integration of high-resolution satellite data products with the MOMO-
Chem physical model parameters to train 2-D U-Net and Random Forest (RF) models to predict
daily 8-hour surface ozone bias across North America and Europe, and showcase the performance
improvement of deep learning over RF in this context. Physical model bias is defined as the
difference, or systematic error, between a physical model’s output and ground truth observations for a
given target variable i.e. surface ozone. This work provides a first application of Deep Learning for
predicting and diagnosing MOMO-Chem physical model residuals in an effort to identify the main
drivers of air pollution model simulation bias for the globe. The study serves as a first step to help
improve Earth system models and to assess and predict the effects of air pollution on human health.

2 Background and Related Work

At the Earth’s surface, ozone is an air pollutant formed through chemical reactions in the atmosphere
when ultraviolet radiationfrom the sun interacts with its precursors, such as nitrogen oxides and
volatile organic compounds [4]. The MOMO-Chem model is a state-of-the-art data assimilation
framework used to estimate various atmospheric composition, including surface-level ozone. How-
ever, it suffers from large systematic estimation errors, i.e. biases, over polluted areas associated with
complex chemical and physical processes. This leads to a limited understanding of air quality and its
health impacts.

2.1 Machine Learning for Air Quality Physical Model Bias

Deep learning can be leveraged to identify mechanisms driving near-surface pollution and correct
for their impact on air quality predictions, thereby improving physical models. Recent work has
been developed to capture physical model bias for climate, weather and Earth system models with
deep learning in [5,6,7], and traditional Random Forest (RF) ML techniques have been applied to
model ozone concentration bias of the GEOS-Chem Chemical Transport Model in China in 2018
[8]. Our work proposes that a U-Net-based architecture is better suited to capture ozone bias than a
RF, based on its ability to capture spatial relationships between neighbouring pixels, and through a
combination analysis of RF and U-Net results, a clearer picture of the drivers of ozone bias can begin
to be uncovered.
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(a) Europe

(b) North America

Figure 2: Ground Truth vs RF baseline vs U-Net model average predictions over Europe and North
America for 2016 test set. Locations are shown where ground truth data is available from the TOAR
network.

Table 1: Model Input Features
Data Source Variables
MODIS maxmium, mean, minimum, average percent coverage per land class type
GPWv411 maximum, mean, minimum, variance
MOMO-Chem ammonia, dimethyl sulfide, nitric acid, carbon monoxide, bromine nitrate,

temperature, nitrogen dioxide, peroxyacetyl nitrate, chemical productions of
hydrogen oxide radicals, surface pressure, hydrogen superoxide, 1-Pentyne,
sulfur dioxide, hydroxide clear-sky longwave radiation flux at surface and
clear string outgoing longwave radiation to space

3 Dataset

Input The 2-hourly outputs of MOMO-Chem’s 126 meteorological and chemical parameters
obtained at 1.125 degree resolution (160x120 latitudinal and longitudinal grid points for the globe)
were first down-selected to an emulator version of 16 of the top-ranked variables by importance from
RF experiments and domain expert insight and used as input features. Land use data was extracted
and processed into an ML-ready format using the airPy package (see 4.2) and includes variables
from the MODIS Land Cover Yearly and GPWv411 Population Density products, encompassing 23
features [9,10]. It is hypothesized that the addition of land use information in our models can help to
better predict MOMO-Chem bias, as we know that land use changes can impact air quality [11]. The
full list of features is detailed in Table 1.

Ground Truth Ground truth surface ozone data is provided by the Tropospheric Ozone Assess-
ment Report (TOAR) database which contains the world’s largest collections of near-surface ozone
measurements [12]. The majority of TOAR stations are located across North America and Europe,
with some coverage over Asia, and virtually no coverage over remote areas and across the Global
South. The dense TOAR coverage over North America and Europe allows us to focus our study on
these regions as a first analysis, with future work to extend to regions with very sparse ground truth.
Bias in the context of this work is the difference between the MOMO-Chem daytime 8-hour average
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(a) Europe

(b) North America

Figure 3: RF vs U-Net Average RMSE over Europe and North America

surface ozone output and the ground-based TOAR observation of daytime 8-hour average surface
ozone.

4 Methodology

4.1 Experimental Setup and Model Architecture

Individual models are trained for North America and Europe for the Summer season (June-August)
respectively. We use a CNN-based model inspired by the U-Net architecture that accounts for
spatial context in the data during training. The deep learning model is compared to a RF baseline.
The North American extent experiments train with multi-channel images (arrays) of size 31x49
covering latitude, longitude ranges of (20, 55) and (-125, -70) respectively, and the European extent
experiments train with multi-channel images of size 27x31 that cover latitude, longitude ranges of
(35, 65), (-10, 25) respectively, matched to the MOMO-Chem grid resolution. Models are trained
on two feature-space configurations (number of channels) to compare the performance with and
without land use information; Experiment 1 uses 16 MOMO-Chem features and Experiment 2 uses
16 MOMO-Chem features plus 23 GEE MODIS and population data. We employ a channel-wise
z-score normalization of the input to improve training.

We adapted the U-Net architecture to include dropout after each of the 2D convolutions in the
Double Convolution module which was found to improve performance over batch normalization
regularization for this application [13]. We train with Adam optimization and a weight decay of
1e-3, constant learning rate of 1e-2, training for 200 epochs and dropout rate of 0.1. Training and
validation was done using samples from years 2005-2015 with a 90-10 train/validation split and
testing on samples from 2016. To combat the ground-truth sparsity impacting U-Net performance,
NaN locations were masked before calculating the loss and back propagating during training.

4.2 Integrating Land Use Information from Satellite Data with airPy

The airPy python package was developed to extract high-resolution surface information from Google
Earth Engine (GEE) and compute relevant metrics for air quality studies for any location on the
Earth for use in ML models and other statistical analysis. For a given latitude, longitude point and
specified area of interest buffer extent, airPy extracts land surface data for the specified GEE product
and calculates relevant statistical features that can match any grid resolution (Figure 1). To support
open science, airPy is open-sourced and is available at: airPy.
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Figure 4: From left to right: Bias prediction histograms over Europe for Random Forest, U-Net, and
U-Net predictions compared to bias ground truth greater than 20 parts per billion (ppb)

5 Results

5.1 Random Forest vs U-Net

Testing model performance during 2016 Summer months, the U-Net outperforms the RF baseline in
North America with an average rmse of 9.6 vs 10.1 respectively, and in Europe with an average rmse
of 8.5 vs 9.1, respectively. Figure 3a-3b showcases the higher performance of the U-Net model, on
average, of capturing MOMO-Chem bias across Europe and North America over the RF baseline
between June-August 2016. Intuitively this makes sense, as the CNN-based model includes spatial
context during training, and supports our hypothesis that including this information is valuable to
better capture ozone.

5.2 Incorporating Land Use Information

Figure 4 supports our hypothesis that including information derived from high-resolution satellite
imagery about land use improves model performance for the RF in capturing bias, and in particular
bias extremes, over Europe. Interestingly however, this is not the case with the U-Net, where the 39-
channel feature space predicts closer to the mean of the bias distribution, in particular for cases of high
bias greater than 20 ppb. These results are consistent with the North America experiments. Further
investigation into this phenomena is ongoing and future work will focus on imbalanced regression
and extreme value prediction problems particular to sparse data to support our investigation into
driving factors of bias.

6 Conclusion

In this work, we have shown for the first time the capability of deep learning to estimate physical model
bias of surface ozone for the MOMO-Chem framework. The U-Net-based model outperforms the RF
baseline for both Europe and North America experiments. Land use information extracted from high-
resolution satellite data improves the RF model in capturing bias, but does not show improvement for
the U-Net in capturing bias extremes, with further investigations ongoing in this direction. To provide
additional value to the scientific community, future work will integrate uncertainty quantification
methodology into our model to provide pixel-wise uncertainty estimates for predictions and explore
deep learning explainability metrics including SHAP [14].

7 Broader Impact

This work serves as a first step to leveraging deep learning to estimate ozone bias with the objective
to improve the MOMO-Chem framework as well as integrating additional land use information into
the understanding of the bias. Improved predictions of ozone bias are integral to correct for their
impact on air quality estimates to make informed decisions to reduce global air pollution and its
adverse health impacts. The development of airPy will reduce computational barriers for the science
community in leveraging Earth data that can extend beyond air quality studies to other Earth Science
applications.
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