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Abstract

This paper introduces two novel machine learning based approaches to improve
hadron-level simulation by integrating experimental observables: Microscopic
Alterations Generated from IR Collections (MAGIC), which fine-tunes normaliz-
ing flows, pre-trained on simulated data from PYTHIA, on experimental observables,
and the Collective Reweighting Method (CRM), which reweights existing frag-
mentation functions to match experimental observables with a two-step procedure
that makes use of a observable-level classifier and hadron-level particle cloud-based
regressor. Both methods show a promising direction towards data-driven models
for hadronization.

1 Introduction

Monte Carlo Event Generators (MCEG), such as PYTHIA [1], play a vital role in both theoretical and
experimental high-energy particle physics research. At collider experiments, MCEGs are used to
provide state-of-the-art theoretical predictions that can be directly compared with measured data. A
significant challenge within MCEGs is the simulation of how individual quarks and gluons combine
into composite objects known as hadrons (e.g. protons) which are then observed by detectors. This
process is known as hadronization and to-date there is still no rigorous theoretical framework that
allows for its calculation. Instead, MCEGs rely on physics-inspired phenomenological models such
as the Lund string model [2, 3] and the cluster model [4–6]. Although generally successful at
describing large amounts of data, these models fail to describe selected subsets of data, motivating
the exploration of alternative data-motivated approaches.

Initial efforts to provide a machine learning representation of simplified hadronizing systems em-
ployed both (MLHAD) conditional sliced Wasserstein autoencoders (cSWAE) [7] and (HADML)
Generative Adversarial Networks (GANs) [8, 9], which were successful in emulating key system
attributes.

However, these architectures are limited by their reliance on hadron-level training data that is not
available at the experimental level. In experiments, data is accessible via observables, where hadrons
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are collected as unordered sets, in which the dynamics of generation cannot be directly resolved. This
restricts access to hadron-level data from experiments, which in turn limits the ability to train these
models on real-world data as they are currently developed.

In this paper, we address this limitation by demonstrating the feasibility of two novel approaches that
learn the individual hadron fragmentation dynamics from experimentally available collections of data.
Both methods perturb existing hadronization models by the application of statistical reweighting, to
produce a new model that better agrees with data.

With the first method, we build on the work in [7], utilizing normalizing flows (NF) [10–12] rather than
a sliced Wasserstein autoencoder (SWAE) [13]. The NF architecture offers a number of benefits over
the previously analyzed SWAE architecture, both in efficiency and physics modelling. Most notably,
it allows for individual microscopic hadron dynamics to be learned using macroscopic experimental
observables through a novel training paradigm termed Microscopic Alterations Generated from IR
Collections or MAGIC. Here, IR (infrared) collections refer to any ensemble of observables which
are sensitive to non-perturbative effects at low energies, i.e. in the infrared regime.

In the second method, the Collective Reweighting Method (CRM) of the hadronization function, we
first encode the likelihood ratio between experimental and simulated data and then translate this
to a corrected hadronization model by using the hadronization history for each simulated event.
Rather than attempting to learn an arbitrary function, this method builds on existing knowledge,
integrating a new physics-inspired approach to optimize the event generation of hadronization models.

2 Method and Results

We use the Lund string model prescription of hadronization to demonstrate the performance of our
two strategies. Within the Lund string model, hadronizing quark/anti-quark pairs are connected
via QCD flux strings, whose energy linearly grows with increasing quark/anti-quark separation.
For large enough separations, it becomes energetically favorable to produce additional quark/anti-
quark pairs along the string, causing the string to undergo iterative breaking. Each break emits
a hadron h, while conserving energy, momentum, and flavor. A comprehensive architecture and
illustration of this process can be found in [7]. The Lund string model has been tested extensively,
and its parameters tuned to the relevant experimental observable distributions. Although generally
in agreement with data, there are still instances where the model outputs deviate from experimental
data. For instance, comparison of data from proton-proton and ion-ion collision with PYTHIA show
discrepancies at the level of O(20%) to O(50%) [14]. These deficiencies underscore a need for
more refined experimental observables and more sophisticated hadronization models. Given a lack
of clear theoretical direction, considering data-driven hadronization models is essential not only to
produce better descriptions of data, but also to help to understand the underlying physics.

2.1 MAGIC

MAGIC Method: MAGIC has two training phases. First, an NF, referred to as the base–model, is
constructed using the FREIA [15] software library and trained on simulated single hadron emission
kinematics x = {pz, pT } similar to what was done in [7]. The second fine-tuning phase of training
requires a three-component training dataset: (1) hadron-level kinematics X , simulated from the
base-model (2) simulated observables Y sim, obtained from the simulated hadron-level kinematics,
and (3) real target observables from experiment Y exp. As a proof of principle, we utilize only a single
observable, namely, the total number of hadrons in an event, known as the hadron multiplicity. The
objective of the fine-tuning phase is to modify the base-model’s likelihood such that the statistical
distance between the updated model observable Y sim′

and Y exp is minimized. This is implemented
in practice by utilizing the Wasserstein or earth mover’s distance (EMD) [16–19] as the loss function.

The primary challenge of fine-tuning the base model on experimental observables lies in the large
number of events needed to compute the observable. Without access to the model likelihood,
the events would need to be simulated again after every training iteration to obtain the simulated
observables in the context of the updated model likelihood. Simulating events after each model
update is not computationally feasible. To avoid this, we utilize the access to the model likelihood
provided by NFs, and assign probabilistic weights for each emission in each event of a given training
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Figure 1: Left using MAGIC: Comparison of hadron multiplicity Nh among base, fine-tuned, and
target “experimental” distributions, which is donated as pseudo data. Right using CMR: Comparison
of the charged multiplicity Nch between PYTHIA simulated, experimental (pseudo) data, and hadron-
level reweighted PYTHIA simulation.

batch. This weight is computed using the likelihood ratio between the base and updated model and
stored in an event weight array with a length equal to that of the training batch:

w =


∏N1

i=1 wi∏N2

j=1 wj

...∏Nn

k=1 wk

 , with wi =
PF ′

X (phi
z , phi

T )

PF
X(phi

z , phi

T )
, (1)

where PF ′

X and PF
X represent the updated and base model likelihood functions, respectively. In this

way, for each training batch, we obtain a multiplicity sample from the updated model Y sim′
, by

reweighting each multiplicity value in Y sim.

MAGIC Training and Results: For the “experimental” hadron multiplicity samples Y exp we
create pseudo data by generating N = 105 PYTHIA hadronization events with a non-default Lund
a parameter1 value of 1.0. The baseline model undergoes fine-tuning over 20 epochs using a fixed
learning rate of δ = 10−4.

A comparison between the hadron multiplicity distributions obtained from the base and fine-tuned
models against the targeted experimental distribution is shown in fig. 1. The results reveal that the
kinematics obtained from the MAGIC fine-tuned model produce a hadron multiplicity distribution in
good agreement with that of the target experimental distribution, demonstrating the efficacy of the
MAGIC method in enhancing model predictions.

2.2 Collective Reweighting Method of the hadronization function

In this section, we introduce the Collective Reweighting Method (CRM), a novel approach for
enhancing hadron-level simulation using experimental observables. In this approach, we train a
classifier to distinguish between simulated and experimental observables and a regressor that translates
the classifier-derived event weights into an individual hadron emission reweighting. This can in turn
be used to derive a data-driven fragmentation function that better aligns with experimental data.

Classifier and Likelihood Ratio: A classifier is trained to distinguish between a set of simulated
events Y sim and a set of experimental events Y exp. For a well-trained classifier, its output g(y⃗) for an
event y⃗, converges to a monotonic function from which we can extract the likelihood ratio between
experimental data and simulation, expressed in terms of measured observables. This function can

1Within PYTHIA, the Lund a parameter is referred to as StringZ:aLund with a default value of 0.68.
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thus be utilized to match simulations to data by reweighting, with the event weight being

w(y⃗) =
g(y⃗)

1− g(y⃗)
=

P(y⃗|exp)
P(y⃗|sim)

, (2)

where the second equality is the likelihood ratio. Assuming discrepancies between data and simulation
arise from hadronization mismodelling, the learned event weight expressed in terms of measured
observables w(y⃗) can be re-expressed in terms of the collection of hadrons contained in each event
{h⃗k, k = 1, ...,K}:

w(y⃗) ≡ w({hk}) =
P({hk}|exp)
P({hk}|sim)

, (3)

where P({hk}|sim) is known, if not analytically then numerically through PYTHIA simulation. We
frame the problem of learning w(y⃗) = f({hk}) as a regression problem, where f is a learned
function. To do this, we represent each collection of emissions as a directed graph, where the node
features and edges are given by the hadronization history produced from PYTHIA, and we make use
of graph neural networks (GNNs) to regress w({hk}). For the simplified quark anti-quark initial
string studied here, the hadronization history implemented by PYTHIA is a Markov process where
each emission is dependent only on the previous emission. With this factorization structure, we can
parameterize the logarithm of the event weight as the sum of the logarithms for individual conditional
probabilities

logw({hk}) =

K∑
k=1

f(hk|hk−1) , (4)

where h0 is a null node and f is a learned function which is applied repeatedly across the event and
is parameterized in terms of a message passing neural network [20]. The method thus makes use of
the fact that in simulation we have access to underlying information which is not available in data.
By translating differences at the observable level to a reweighting function at the hadron level and
combining these weights with our knowledge of P(hk|sim), we obtain a data-driven fragmentation
function P(hk|hk−1, exp) = f(hk|hk−1)P(hk|hk−1, sim) that better aligns the simulation with the
experimental data at the observable event level, leading to a more accurate simulation.

CRM training and results. To illustrate the method, we simulate electron-positron collisions with
a center-of-mass energy at the measured Z-boson mass, with the Z decaying into a light quark/anti-
quark pair, and allow only hadronization to pions without decaying. To keep the simple qq̄ structure,
we do not include parton showers before hadronization. The simulated dataset is obtained with
PYTHIA by setting the a, b and σpT

parameters to their Monash tune [21] values a = 0.68, b = 0.98
and σpT

= 0.335. For the measurement simulation, we also use PYTHIA but change a to 0.3 and fix
the other parameters. For each event, we consider nine high-level observables that are accessible in
real data, including charge multiplicity, and for the simulated dataset we store nine node features for
each simulated hadron.

For the first step, a gradient boosting classifier implemented in XGBOOST [22] was trained on 106

events with a learning rate of 0.5 and maxdepth of 5. The hyperparameters are tuned to ensure optimal
calibration. For the second step, we utilize a POINTNET architecture [23] to perform point cloud
regression, which was trained on 105 events, each consisting of a variable length set of unordered
emissions. For the POINTNET architecture, the message function is a multilayer perceptron with
three layers, with the first two layers containing 256 neurons each and a ReLU activation function,
and the last layer consisting of a linear layer with a single neuron. Thus, the message passing function
is by construction the f function shown in eq. (4).

In fig. 1 (right) we show the results for the charge multiplicity (Nch), which show a notable im-
provement in matching the experimental data through event reweighting. This is then translated to a
data-driven fragmentation function which shows good agreement with the one used to generate the
experimental pseudo data.

3 Discussion and Outlook

In this paper, we introduced two novel approaches on how to train hadron-level events on experiment-
accessible observables. While the capability of MAGIC was demonstrated on pseudo-experimental
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data, it showed promising results by only employing only one observable. CRM on the other hand
was applied to more observables and showed the capability to tune hadronization models to pseudo
data, albeit with a higher bias deriving from its larger reliance on the Lund string model. A more
detailed description of MAGIC can be found in [24]. Future work will apply both of these method to
more experimentally accessible observables, using more realistic string topologies, and a detailed
study of both methods will be published in the near future.

Broader Impact

A data-driven hadronization model will significantly impact a large range of collider experiments,
allowing for more accurate theoretical predictions while also providing checks on theoretical assump-
tions such as factorization and universality. Beyond its use in particle physics, the learned techniques
can be generalized to any problems where empirical simulators with known probabilistic models
need to be improved upon to match real-world data. With its compromise between model bias and
data-driven focus, the proposed methods can be a robust alternative to fully data-driven generative
models.
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