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Abstract

Physics Informed Neural Networks (PINNs) promise performance gains in solving
partial differential equations (PDEs) related to diverse applications. Yet, their
training can be challenging, attributed in part to their unique loss function com-
ponents. This study examines the optimization trajectory of PINNs for the heat
equation, comparing it to a similarly-architected model trained on a numerical PDE
solution. Our findings suggest that PINNs experience prolonged plateaus and un-
stable training behaviors predominantly due to poor and highly varied interactions
between individual components of the PINN loss. While a complete understanding
of training-dynamics remains open, we hope to shed more light on this problem.

1 Introduction

Physics Informed Neural Networks (PINNs) have gained prominence across diverse applications,
spanning fields from fluid flow [3, 9, 13, 16, 14], diffusion processes [4], engineering [15] and
medicine [20]. By combining data-driven learning with our understanding of physical laws, PINNs
emerge as an exciting tool in physical sciences.

The defining feature of PINNs is the loss function [19]. The loss has two components: the differential
loss which penalizes not satisfying the differential equation, and the boundary loss which biases the
network to have correct initial and boundary condition. The training of this model is accomplished
via automatic differentiation tools [18, 2, 1] and using continuous activation functions.

While PINNs hold great potential for solving PDEs, their training can be challenging in practice
[11]. Adaptive sampling methods [6, 7, 16] and innovative architectures [8, 5] have been explored to
address these challenges. Yet, difficulties persist, with their root causes remaining unclear. Current
work on dynamics between differential and boundary loss [11] largely focuses on the loss landscape,
not the optimization trajectory. Insights about the disproportionate impact of exploding gradients on
differential loss [21] provide some clarity but don’t paint a full picture [11].

To study the behavior of PINNs, we perform a comparative study to a network trained to fit a
numerical solution, which we call a Regression Model. For this study, we let the architecture of the
two networks be equivalent, with the only difference arising from the objective with respect to which
they are trained. While in practical applications, we do not have numerical solutions available, by
comparing the behavior between the networks, we hope to better understand failure modes of PINNs.

1.1 Contributions

Against this background we make the following observations
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• PINNs remain in plateaus significantly longer than a network trained to fit a numerical
solution—reflecting the difficulty in training PINNs. We additionally find that the update-
step sizes of both methods are comparable during the plateau, indicating that the length of
the plateau is not solely attributable to smaller steps or different learning rates.

• During the plateau, the PINN is displaying both update-steps which are frequently orthogo-
nal, and an average distance travelled per update-step that is lower when compared to the
Regression Model. Since update-steps that are not aligned often lead to an optimization
trajectory with high variance, we may attribute the slower progress to such behavior. As the
distance travelled by the PINN is also slightly larger, a lower distance travelled per step will
lead to a prolonged plateau.

• Our main observation is that the gradient of the two key components of the PINN loss,
a differential and boundary loss, are on average in opposition during the plateau training
period and a bit more aligned after. During the plateau period such a behavior is problematic,
as in conjunction with the exploding gradient phenomenon of the differential loss, this may
lead to the observed misalignment of consecutive update-steps.

1.2 Notation

Let ϕ(x ∈ Rd, t ∈ R+; θ ∈ RM ) → y ∈ R be a neural network. Let A ⊆ Rd, then ∂A is
the boundary of A and Ā is the closure. |.| denotes the absolute value function. ∆ is the Laplace
operator ∆ =

∑d
i=1

∂2

∂xi
2 . The × symbol is used for the Cartesian product of two sets. We call the

optimization trajectory the set {θi|0 ≤ i < N} obtained during optimizing a network for N steps.

2 Background

Heat Equation We focus on the heat equation on a rectangular domain Ω̄ ⊆ R2 and time interval
[0, T ]. We let f(x) be the initial condition and g(x) be the boundary condition. The exact formulation
of the physical process is given in Appendix A. We selected the heat equation as a representative
of parabolic and diffusion-type equations. Given the diverse qualitative behaviors of processes
represented by differential equations, it is impractical to study them all simultaneously. Focusing on
a specific process, like the heat equation, offers a more targeted approach.

PINN Loss. Let the sets of collocation points be given by S ⊆ Ω × (0, T ], Sinit ⊆ Ω and ∂S ⊆
∂Ω× [0, T ]. We define the PINN loss as for our problem as LPINN (θ) := LDiff + λbLBoundary,
where the differential loss is given by LDiff (θ) :=

∑
(x,t)∈S |∆ϕ(x, t; θ) − ∂tϕ(x, t; θ)|2 and

LBoundary(θ) :=
∑

(x,t)∈∂S |ϕ(x, t; θ)− g(x)|2 +
∑

x∈Sinit
|ϕ(x, 0; θ)− f(x)|2 provides the loss

based on the boundary and initial conditions. The λb parameter adjusts the weighting of the differential
and boundary losses.

Regression Loss. The regression loss requires a numerical solution to the PDE problem, which we
describe in Appendix C. We then construct a dataset D ⊆ Ω̄× [0, T ]×R and define the regression loss
to be LRegression(θ) :=

∑
(x,t,y)∈D |ϕ(x, t; θ)− y|2. The model trained to minimize the regression

loss is then called the Regression Model.

3 Methodology

Training and Evaluation. For each model we use Adam [10] as our optimization method and
complete 1000 update-steps, irrespective of batch-size, to make the optimization procedure more
comparable. The PINN and Regression Model collocation sets are obtained via the same grid
discretisation of the domain. In addition to a grid-discretisation, the Regression Loss requires ground
truth values for the solution to the PDE. We obtain these via standard numerical methods for solving
PDEs. The details of the above construction are provided in Appenidx B and C respectively. For our
study, we evaluate each model on both losses. For each loss type, we use the respective training set
as the evaluation set. As we are interested in the approximation rather than generalisation power of
each model, we chose a fine discretisation of the domain for training and such an evaluation set is
appropriate.
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Network and Hyperparameter selection. We used the same architecture and learning rate for both
the PINN and Regression Model. One difference being that a full-batch is used for the PINN and
a batch of size 512 for the Regression Model. The other difference being that we varied the λb

parameter for the PINN loss. We chose these values after performing a hyperparameter search over
2000 combinations as demonstrated in Appendix D. We then ranked the networks according to their
Regression loss on the hold out set and found the best performing parameters for both models to be
nearly identical. To compare the methods we reran the best performing network architecture and
learning rate on fifty different seeds. While the same learning rate is used, it remains important to
investigate the true update-step sizes for each method as the objective function may be differently
conditioned. We emphasise that due to an equivalent architecture, both methods have the same
representation power and the same model bias–inductive bias is solely due to the objective function.

Plateau Definition. Intuitively a plateau is a period during training where the loss curve does not
significantly change. Due to noise, this is difficult to make precise. So, we define the plateau to be
the outcome of the following procedure. We smooth the curve twice with an exponential moving
average, with a span of ten and twenty respectively–the method for this is given by pandas [17]. This
smooths the curve without displacing it much. We let the plateau be the first contiguous region within
which the loss does not decrease by more than 0.15 over 20 steps. For visual clarity we mark the
plateau region with red-dashed lines.

Comparison Methodology. Our comparison focuses on evaluating various metrics and presenting
summary statistics for within the plateau and after it. We choose this separation because we observed
a distinctive shift in the qualitative behavior of our chosen metrics within these regimes. Our
summary statistics rely on the average and standard deviation of any metrics within the training
period considered. Here we assess all metrics based on the hold-out set of the corresponding loss. To
demonstrate the behavior of the metrics over the optimization trajectory we plot them for a chosen
PINN and Regression Model. The optimization trajectories remain the same for every such plot.

4 Results
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Figure 1: Regression Loss and Plateau Length.

The PINNs are stuck on plateaus longer than the Regression Models while retaining comparable
update-step lengths. We see in Figure 1c that the number of steps the PINN spends in a plateau
is roughly twice as much as for the Regression Model. This appears to be reflective of the general
difficulty of training PINNs that has been observed in the literature. During such a plateau, it is often
understood that small update-steps lead to longer escape times. However, we observe in Figure 2b
that while the step lengths for the PINN are slightly shorter, they are generally comparable and can
not fully explain the discrepancy in time spent in the plateau.

For the PINN models, consecutive update directions are often orthogonal or in slight contrast
which may lead to an observed lower average distance traveled per step. In Figure 3b we observe
that the mean cosine-similarity, and hence the similarity in direction, between two consecutive
update-steps is significantly lower for the PINN model. Pairing this with the observation in Figure 3c
that the variance of the similarities is also larger, we may reason that the optimization trajectory is
significantly more varied for the PINN model. While not always the case, such a varied optimization
trajectory often leads to a lower pace, as measured by average distance covered per update-step, which
we confirm to be true via Figure 4f. Additionally, as seen in Figure 4b, the PINN covers slightly
more distance during the plateau, which may be expected with a varied optimization trajectory. In
combination the PINN will spend more time in the plateau. We emphasize that the average distance
travelled per update-step is different to the true length of each update-step. The average distance
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Figure 2: The update-step length (norm of the difference of two consecutive networks).
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Figure 3: The cosine similarity between two consecutive update-steps.

travelled is simply the distance travelled over some number of update-steps and is hence only a
measure of the overall rate of the optimization trajectory. While at first surprising, the decrease in
update-step similarity after the plateau as seen in Figure 3e may be explained by the process finding
a minimum and hence leading to slightly more "bouncing around" due to reaching more of a bowl
shape. When this happens the optimization process slows down in distance travelled, as we observe in
Figure 4e. This requires further study, as it has often been observed that due to symmetries level-sets
are connected and hence minima may instead form valleys [12].

Our key observations center around the misalignment of the gradients of the differential
and boundary loss. Specifically, we consider the cosine-similarity of the gradient of LDiff and
LBoundary . We observe that for both models the average similarity is close to zero, as seen in Figure
5b, and the variance is very high, as seen in Figure 5c. Even more so, we observe that for the
PINN the gradients on average point in opposite directions. While λb adjusts the weighting of each
loss term and hence the direction of a PINN update-step, this lack of similarity leads update-steps
to not be well-aligned with either the differential or boundary loss descent direction. Specifically,
when approaching regions with increased differential loss, due to the exploding gradient property
subsequent differential loss gradients may be large and lead to update-step instabilities as observed
in Figure 3. While the Regression Model moves through parameter regions where under the PINN
loss it displays similar qualitative behavior to the PINN models, the Regression Model is ultimately
unaffected as it does not depend explicitly on the differential loss. Hence, it does not suffer from
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Figure 4: The distance travelled by the network.
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Figure 5: The cosine similarity between the gradient of LDiff and LBoundary .

update-step instabilities and can move through areas which may exhibit larger underlying differential
loss. Interestingly, the average similarity for the Regression Model is slightly positive, possibly a
result of such reduced instabilities. Once the plateau ends, the variance of the similarity metric is
reduced as seen in Figure 5f, and the update-steps become more aligned on average as seen in Figure
5e–potentially reflecting a more stable learning period after the plateau.

5 Conclusion

In our comparative study of PINN and Regression Model’s optimization trajectories, we focused on
the heat equation to provide a specific type of physical process. Reflective of the commonly observed
difficulty of training PINN’s, the PINN model exhibited prolonged stagnation in training compared
to a Regression Model. This behavior appears to stem from unstable update-steps, which we find
evidence to arise from an unfavorable interplay of the differential and boundary loss components.
Based on our work, we believe optimization procedures which correctly account for conflicting
descent directions from the components of the PINN loss, rather than merely re-weighting the
components, may show better performance. Overall, further investigation is necessary to fully
understand the properties of training under a PINN loss.
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A Heat Equation

The problem is solving the PDE:



∆u(x, y, t) = ∂tu(x, y, t)

u(0, y, t) = a1
u(L, y, t) = a2

u(x, 0, t) = u(x,W, t) = 5sin(
2πx

L
× freq) + a1 + (a2 − a1)

x

L
u(x, y, 0) = 0 for 0 < x < L, 0 < y < W

for t ∈ [0, T ].

Interpretation of above PDE The PDE describes the diffusion of heat on a rectangular region
[0, L] × [0,W ]. Initially the region has zero temperature and at t = 0 the edges are given fixed
temperature profiles for all subsequent time. The left edge is held at a1, the right edge at a2 and on
the top and bottom edges oscillatory boundary conditions are imposed.

We fix the values of the parameters that define the PDE, a1 = 0, a2 = 5, freq = 2, L = 1
and W = 1. Changing the parameters governing the PDE and then conducting a network and
hyperparameter search leads us to observe similar behaviour to what is described in this work.

B PINN Training Dataset

The dataset of points for PINN training is constructed by taking a 3D grid with the range 0 < x < L,
0 < y < W and 0 < t ≤ T and taking N equally spaced values for each dimension, using the
linspace function. For the boundary points, including the initial condition, we use boundary and
initial conditions to obtain the correct PDE solution values at these points. The remaining (x, y, t)
points form the collocation points dataset

C Regression Loss and Numerical Solution

The numerical solution to the PDE can be obtained using a finite difference approximation. For a
uniform grid the value, ũm,n,k+1, the approximate value of u at the coordinate (mϵ, nϵ, (k + 1)δ)
assuming the point does not lie on the boundary is given by

ũm,n,k+1 =
δ

(ϵ)2
(ũm−1,n−1,k+ ũm−1,n+1,k+ ũm+1,n−1,k+ ũm+1,n+1,k−4ũm,n,k+1)+ ũm,n,k+1

the term in the brackets can be implemented using the convolution operation. The method is
numerically stable when δ ≤ ϵ2

4 , or equivalently 4(N − 1)2 ≤ (Nt − 1) where N is the number of
x coordinates and Nt is the number of timesteps used. For the boundary points the values are set
such to what is given by the boundary condition. If only the solution at some time is desired, to get
accurate results many intermediate timesteps are used.

For the Regression Loss we obtain a numerical solution with N = 26 and Nt = 10, 001. The dataset
which is ultimately used is a subset of this numerical solution such that 26 points are used in each
axis direction. This is to ensure that we match the discretisation of the data used for the PINN loss.
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Figure 6: Numerical Solution at t = 0.1

Dataset generation for regression training To construct the dataset for regression training we set a
value for N and Nt and then proceed with computing the numerical solution whilst collecting the
approximate solution values for all of the N2 grid points at each timestep.

D Network construction and Hyperparameter selection

Table 1 displays the associated parameters for the best three networks for the PINN and Regression
Models as measured by regression loss.

The following are the hyperparameter ranges and general results for PDE coefficients, network
construction and hyperparameter selection.

• Adam is the optimizer for all of the networks and the learning rate is chosen from
{0.0001, 0.0005, 0.001}. The best learning rate was 0.001 for all top three models.

• The number of neurons in the hidden layer is taken from {32, 64, 128, 256}.
• The number of hidden layers is taken from {2, 3, 4}.
• For the PINN networks the batch size used for calculating the loss at each update-step is in
{128, 256, 512, full batch}. For the Regression Models the batch sizes are the same except
full batch is not an option due to the large size of the regression dataset.

• In the search we try two values of λb, 1 and 100 and all of the best networks shown here
prefer the latter.

Regression PINN
Setting 1 2 3 1 2 3

Model
Architecture: FCN FCN FCN FCN FCN FCN
Activation: GELU sin GELU GELU sin sin
Width: 256 256 256 256 256 256 256

Number of Layers: 4 3 4 4 2 3
Data

Batch Size: 512 512 128 Full Batch Full Batch Full Batch
Table 1: Top 3 Regression and PINN Configuration Settings. Note that the Nt parameter is not
applicable for the PINN setups and the time spacing is governed by N in these cases. For the
regression setups the parameters λb are not applicable.
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