
Equivariant Neural Networks for Signatures of Dark
Matter Morphology in Strong Lensing Data

Geo Jolly Cheeramvelil
Department of Computer Science and Engineering,

Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, India
amenu4cse20025@am.students.amrita.edu

Sergei Gleyzer
Department of Physics & Astronomy, University of Alabama,

Tuscaloosa, AL 35401, USA
sgleyzer@ua.edu

Michael W. Toomey
Center for Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA
mtoomey@mit.edu

Abstract

One of the most promising avenues to study dark matter is from its interactions
with gravity. In particular, it is well known that dark matter can be studied from
the effect of its substructure in strong galaxy-galaxy lensing images. However, in
practice, this is a very challenging problem to solve as the lensing signature is a
sub-dominant effect, relative to that from the main halo, and there are also many
systematics which are hard to account for. To circumvent these issues, machine
learning has been studied extensively in the context of lensing to circumvent exactly
these problems. Indeed, deep learning methods have the potential to accurately
identify images containing substructure accurately. Most applications of machine
learning to strong lensing rely on using convolution neural networks (CNN). In
this work, we study the performance of equivariant neural networks (ENN) using
simulated strong galaxy-galaxy lensing images as a means to study dark matter.
We find that equivariant neural networks outperform state-of-the-art CNNs in both
classification and regression tasks. This suggests that ENNs may be better suited
for future lensing studies.

1 Introduction

Despite having now been studied for nearly a century, the identity of dark matter remains as elusive
as ever. Constituting about 80% of the mass content in the Universe today, or roughly 25% of the
current energy density, dark matter is one of the bedrocks of modern cosmology and astrophysics.
While the evidence for dark matter is strong, e.g. it is required for the formation of the cosmic
microwave background [1], experiments aimed at identifying its true nature have consistently seen no
signal [2, 3, 4, 5, 6, 7]. While dark matter may well be one of the proposed models that have been
extensively studied, e.g. weakly interacting massive particles (WIMPs), its could also be the case that
dark matter may not couple to the Standard Model or that its couplings are too weak to be observed
with direct or indirect detection.
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While it is certainly possible for dark matter to lack such couplings to the Standard Model, it should,
in principle, be possible to shine light on the identity of dark matter via gravity alone. Indeed, since
dark matter clearly does not violate the equivalence principle, it is worthwhile to consider avenues to
understand and constrain dark matter from its gravitational interactions alone. A growing area of
study in this direction has been the use of strong galaxy-galaxy lensing for the study of dark matter.
Lensing is interesting in the context of dark matter because the extended lensing arcs are sensitive
to the presence of substructure in the dark matter halo, see for example [8, 9, 10, 11, 12, 13, 14].
Changes to the distribution of dark matter (sub)halos and their morphology can then be leveraged to
distinguish between different models. However, in practice the complexity of lensing data makes this
a challenge.

To better harness the potential of strong gravitational lensing data, deep learning methods have been
applied to both real and simulated data and emerged as powerful tools and capable of identifying
substructures, e.g. [15, 16, 17, 18, 19]. Furthermore, some work has even suggested that, in the
controlled setting of lensing simulations, ML methods have the power to distinguish between various
dark matter models [20]. Most studies in this context have relied on the applications of state-of-the-art
convolutional neural networks (CNN) like ResNet. Indeed, CNNs are well suited for applications to
lensing data sets, as they are, in fact, images. The convolutional filters are able to leverage the local
correlations in the structure of extended arcs while simultaneously taking advantage of the built-in
transitional invariance of CNNs to reduce the complexity of training.

On another front, equivariant neural networks, such as E(2)-steerable Convolutional Neural Networks
(CNNs), have gained prominence due to their ability to preserve further, inherent data symmetries,
making them potentially well-suited for the diverse orientations and reflections present in strong
gravitational lensing images. Equivariance in this context is rather simple, the architecture can
be constructed in such a way that they are innately invariant to different discrete or continuous
symmetries. This is expected to enhance performance as an architecture of a different design would
be forced to learn such symmetries if they are present in the data. Concrete examples of this
have been demonstrated in the literature. As an example, [21] investigated rotational equivariance
when applied to spherical images. The authors demonstrate that non-equivariant CNN models
necessitate substantial data augmentation to attain performance levels comparable to their smaller
equivariant counterparts. Furthermore, the authors showcased the limitations of non-equivariant
semantic segmentation models, revealing performance plateaus even with increased data augmentation.
Notably, the result underscores that equivariant models not only outperform non-equivariant models
but also achieve comparable performance with reduced training times – as one would naively expect.

In this work, we delve into the application of such equivariant neural networks for extracting
information about dark matter from simulated galaxy-galaxy strong lensing images. In what follows
we 1) explore the classification performance of our architectures for distinguishing between three
different example dark matter models and 2) regress directly on the particle mass for ultra-light axion
dark matter from the lensing images. We find that the equivariant neural networks are effective at
increasing the performance on both tasks relative to traditional CNNs.

2 Methods

In this section, we describe the methodologies and approaches employed in our research to address
the objectives outlined in the introduction. First we outline the details of the data set that we use
in our analysis, which we follow by detailing the architectures that we have used. During training,
we employ NVIDIA A100 GPUs to efficiently train all the deep learning models. These GPUs are
crucial for handling the computational demands of training these complex models. We also use the
Adam optimizer [22] and the cross-entropy loss function. Our training regimen spans 10 epochs, with
each epoch processing batches of 64 samples. Additionally, we set the learning rate to 1× 10−4.

2.1 Data sets

For our analysis we construct two data sets. We call them Model A and Model B which are designed
to mimic mock simulations of galaxy-galaxy strong lensing from observations with a Euclid or
HST like survey, respectively. Our simulations which are produced with the package lenstronomy
[23] create single channel images of size 64 × 64. We model the background galaxies, which are
subsequently lensed, with with a Sersic light profile. For dark matter, we create three concrete classes.
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Figure 1: Example of a Harmonic Network with two hidden layers. Each horizontal stream represents
a series of feature maps of constant rotation order, while the edges represents cross-correlations.

Table 1: Classification results from equivariant and baseline architectures for Models A and B.

Dataset Model name Accuracy AUC

Model A

ResNet50 96.86 0.99740
C8Steerable CNN 99.02 0.99967
Harmonic Net 90.95 0.98516
Equivariant transformer 92.413 0.99321

Model B

ResNet50 98.67 0.99926
C8Steerable CNN 99.28 0.99972
Harmonic Net 90.24 0.98904
Equivariant transformer 97.42 0.99770

First we have lensing from standard cold dark matter (CDM) where our main halo, which we model
with a spherical isothermal profile, has dark matter subhalos drawn from the the standard subhalo
mass distribution (see [15] for more details). In addition to CDM, we also simulate the effects from a
ultra-light axion dark matter model. In particular, our axion simulation corresponds to the regime
where the particle mass ∼ 10−23 eV where substructure is high suppressed and the main observable
is topological defects in the dark matter halo; namely vortex substructure [24]. Our last dark matter
class consists of one with the absence of any substructure. While not a realistic model, in principle,
since we are working with simulations it serves as a useful testbed for understanding the performance
of our machine learning models – particularly because its signature is not expected to be degenerate
with CDM or the axion. In compiling our simulations we construct 30,000 images per class and we
separately construct a test set comprised of 5,000 images per class.

2.2 ResNet50

The first architecture that we study is the widely-used ResNet50 [25] architecture, which is known
for its strong performance in various computer vision tasks. In particular, ResNet has been shown to
exhibit very strong performance in previously strong lensing studies, e.g. [20]. In this work, we use
ResNet50 as our reference point to compare to the performance of our equivariant network.

2.3 General E(2) - Equivariant Steerable CNNs

Next, we consider E(2) - Equivariant Steerable CNNs [26], a type of convolutional neural network
architecture tailored to address the limitations of standard CNNs with added equivariance under
the Euclidean group E(2), encompassing transformations like rotations and reflections in a two-
dimensional Euclidean space. These networks employ mathematical techniques to decompose kernel
constraints into irreducible subspaces, utilize group representations to steer features, employ a group
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Table 2: Regression results from equivariant and baseline architectures for Models A and B.

Dataset Model RMSE MSE MAE

Model A

ResNet50 0.01309 1.31E-02 0.01030
C8Steerable CNN 0.02504 6.30E-04 0.02096
Equivariant Transformer 0.00691 4.78E-05 0.00690
Harmonic Network 0.02181 7.88E-04 0.02181

Model B

ResNet50 0.01685 2.87E-04 0.01306
C8Steerable CNN 0.00453 2.07E-05 0.00357
Equivariant Transformer 0.00410 1.69E-05 0.00407
Harmonic Network 0.01068 1.16E-04 0.00818

restriction operation, and include specific implementation details. This design ensures that feature
maps exhibit consistent behavior under various transformations, making steerable CNNs a powerful
tool for handling a broader range of geometric transformations in image processing tasks.

2.4 Equivariant Transformer

Equivariant Transformers[27] are a family of neural network layers designed for image-to-image
mappings in computer vision tasks. They enhance model robustness by considering pre-defined
continuous transformation groups like translations, rotations, and scaling. ETs incorporate prior
knowledge about invariances to these transformations, enabling them to recognize and handle these
transformations explicitly. They use specially-derived canonical coordinate systems and functions that
are equivariant by construction, making them particularly useful for normalizing image appearance
before subsequent operations like classification within convolutional neural networks, ultimately
improving model performance in tasks involving transformational variations.

2.5 Harmonic Network

Harmonic Networks [28] or H-Nets are a type of convolutional neural network (CNN) that exhibits
equivariance to patch-wise translation and 360-rotation, which is not the case for regular CNNs,
where global rotation equivariance is typically sought through data augmentation. They achieve this
by using circular harmonics instead of regular CNN filters, which return a maximal response and
orientation for every receptive field patch. It works by creating different streams of constant rotation
order responses which runs through the network - see Fig. 1. H-Nets use a rich, parameter-efficient,
and low computational complexity representation, and deep feature maps within the network encode
complicated rotational invariants.

3 Results & Discussion

Our main results after training our architectures for classification are presented in Table 1. We see
that Harmonic Nets have the worst performance for Model A(B) with an AUC of 0.985 (0.989) and
accuracy of 91.0% (90.2%) and followed by the equivariant transformer at 0.993 (0.998) and 92.4%
(97.4%). Relative to ResNet50, the performance is actually worse, as the former architecture has
an AUC and accuracy for Model A(B) of 0.997 (0.999) and 96.9% (98.7%), respectively. However,
we find that the C8Steerable CNN achieves the leading performance with near perfect scores in
classification with 0.999 (1.000) AUC and 99.0% (99.3%) accuracy for Model A (B). This appreciable
gain in performance relative to ResNet50 can likely be attributed to the increased redundancies built
into the architecture to learn representations of the data sets.

To complement the classification results, we also study the performance of these models in the
context of regressing the axion mass. That is, we train the same architectures to predict the axion
mass for the ultra-light dark matter sample based on the images. As Table 2 shows, the equivariant
architectures consistently achieved lower RMSE, MSE, and MAE compared to non-equivariant
models. Interestingly, it is the equivariant transformer that performs best at this regression task.

In this work, we have shown that equivariant neural networks, such as E(n) Steerable CNN and
equivariant transformers, exhibited strong performance in both classification and regression tasks.
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Notably, these equivariant networks also converged faster when compared to ResNet50. This
faster convergence is a promising indicator of their efficiency and effectiveness in various machine
learning applications for the identification and differentiation of dark matter substructure. We have
demonstrated using simulations that the equivariant models perform well at distinguishing the lensing
signature of CDM from other models such as ultra-light axion dark matter and a toy model with
no dark matter substructure. We also saw remarkable performance relative to our CNN baseline
in the context of regression. These results underscore the considerable potential of equivariant
neural networks in enhancing our understanding of dark matter’s underlying nature through strong
gravitational lensing analysis.

4 Acknowledgments

G.J.C. was a participant in the Google Summer of Code 2023 program. S.G. was supported in part
by U.S. National Science Foundation award No. 2108645. M.W.T. was partially supported in part
by U.S. National Science Foundation award No. 2108866. Portions of this work were conducted
in MIT’s Center for Theoretical Physics and partially supported by the U.S. Department of Energy
under grant Contract Number DE-SC0012567.

References
[1] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys.,

641:A6, 2020. [Erratum: Astron.Astrophys. 652, C4 (2021)].

[2] A. K. Drukier, Katherine Freese, and D. N. Spergel. Detecting Cold Dark Matter Candidates.
Phys. Rev., D33:3495–3508, 1986.

[3] Mark W. Goodman and Edward Witten. Detectability of Certain Dark Matter Candidates. Phys.
Rev., D31:3059, 1985. [,325(1984)].

[4] D. S. Akerib et al. Results from a search for dark matter in the complete LUX exposure. Phys.
Rev. Lett., 118(2):021303, 2017.

[5] Xiangyi Cui et al. Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment.
Phys. Rev. Lett., 119(18):181302, 2017.

[6] E. Aprile et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T.
Phys. Rev. Lett., 121(11):111302, 2018.

[7] Morad Aaboud et al. Constraints on mediator-based dark matter and scalar dark energy models
using

√
s = 13 TeV pp collision data collected by the ATLAS detector. JHEP, 05:142, 2019.

[8] S. Mao and P. Schneider. Evidence for Substructure in lens galaxies. MNRAS, 295:587–594,
1998. arXiv.

[9] J.W. Hsueh et al. SHARP - IV. An apparent flux ratio anomaly resolved by the edge-on disc in
B0712+472. MNRAS, 469(3):3713–3721, 2017. arXiv.

[10] N. Dalal and C.S. Kochanek. Direct Detection of CDM Substructure. ApJ, 572:25–33, 2002.
arXiv.

[11] Y.D. Hezaveh et al. Detection of Lensing Substructure Using ALMA Observations of the Dusty
Galaxy SDP.81. ApJ, 823(1):37–56, 2016. arXiv.

[12] S. Vegetti and L.V.E. Koopmans. Bayesian strong gravitational-lens modelling on adaptive
grids: objective detection of mass substructure in Galaxies. MNRAS, 392(3):945–963, 2009.
arXiv.

[13] L.V.E. Koopmans. Gravitational imaging of cold dark matter substructures. MNRAS,
363(4):1136–1144, 2005. Oxford Journals.

[14] S. Vegetti and L.V.E. Koopmans. Statistics of mass substructure from strong gravitational
lensing: quantifying the mass fraction and mass function. MNRAS, 400:1583–1592, 2009.
arXiv.

5

https://arxiv.org/abs/astro-ph/9707187
https://arxiv.org/abs/1701.06575
https://arxiv.org/abs/astro-ph/0111456
https://arxiv.org/abs/1601.01388
https://arxiv.org/abs/0805.0201
https://academic.oup.com/mnras/article/363/4/1136/1044360
https://arxiv.org/abs/0903.4752


[15] Stephon Alexander, Sergei Gleyzer, Evan McDonough, Michael W. Toomey, and Emanuele
Usai. Deep learning the morphology of dark matter substructure. The Astrophysical Journal,
893(1):15, apr 2020.

[16] Siddharth Mishra-Sharma and Ge Yang. Strong Lensing Source Reconstruction Using Con-
tinuous Neural Fields. In 39th International Conference on Machine Learning Conference, 6
2022.

[17] Gemma Zhang, Siddharth Mishra-Sharma, and Cora Dvorkin. Inferring subhalo effective
density slopes from strong lensing observations with neural likelihood-ratio estimation. Monthly
Notices of the Royal Astronomical Society, 517(3):4317–4326, 10 2022.

[18] Thuruthipilly, Hareesh, Zadrozny, Adam, Pollo, Agnieszka, and Biesiada, Marek. Finding
strong gravitational lenses through self-attention - study based on the bologna lens challenge.
A&A, 664:A4, 2022.

[19] Ana Diaz Rivero and Cora Dvorkin. Direct Detection of Dark Matter Substructure in Strong
Lens Images with Convolutional Neural Networks. Phys. Rev. D, 101(2):023515, 2020.

[20] Stephon Alexander, Sergei Gleyzer, Evan McDonough, Michael W. Toomey, and Emanuele
Usai. Deep Learning the Morphology of Dark Matter Substructure. Astrophys. J., 893:15, 2020.

[21] Jan E. Gerken, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson, Christoffer Petersson, and
Daniel Persson. Equivariance versus augmentation for spherical images, 2022.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[23] Simon Birrer, Adam Amara, and Alexandre Refregier. Gravitational lens modeling with basis
sets. The Astrophysical Journal, 813(2):102, nov 2015.

[24] T. Rindler-Daller, P.R. Shapiro. Angular momentum and vortex formation in Bose-Einstein-
condensed cold dark matter haloes. MNRAS, 422:135–161, 2012. arXiv.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2015.

[26] Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns, 2021.

[27] Kai Sheng Tai, Peter Bailis, and Gregory Valiant. Equivariant transformer networks, 2019.

[28] Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow.
Harmonic networks: Deep translation and rotation equivariance, 2017.

6

https://arxiv.org/abs/1106.1256v4

	Introduction
	Methods
	Data sets
	ResNet50
	General E(2) - Equivariant Steerable CNNs
	Equivariant Transformer
	Harmonic Network

	Results & Discussion
	Acknowledgments

