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Abstract

Score based generative models are a new class of generative models that have
been shown to accurately generate high dimensional datasets. Recent advances in
generative models have used images with 3D voxels to represent and model com-
plex detector data. Point clouds, however, are likely a more natural representation
for many of these data sets, particularly in calorimeters with high granularity that
produce very sparse images. Point clouds preserve all of the information of the orig-
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inal simulation, more naturally deal with sparse datasets, and can be implemented
with more compact models and datasets. In this work, two state-of-the-art score
based models are trained on the same set of calorimeter simulation and directly
compared.

1 Introduction

Score based diffusion models have had incredible success generating high fidelity images. Recently,
these techniques have been adapted for use in collider physics where images are often used represent
the data measured in detectors. However, these data are unlike natural images in a number of ways,
most notably in their sparsity. As such, image-based approaches pioneered in industry may not be the
most effective for particle interactions.

We study this problem in the context of a specific example: Calorimeters. Since most cells in a
calorimeter image are empty, a more natural representation of these data may be a point cloud. Point
clouds are a set of attributes assigned to locations in space. In the calorimeter case, the attribute is
energy and the location is the cell coordinates. A calorimeter point cloud would require far fewer
numbers to specify than an image representation, since only cells with non-zero energy would be
recorded. The main challenges for point cloud models in contrast to image-based approaches is that
they must cope with variable-length outputs that respect permutation invariance. With a lag compared
to image-based approaches, point cloud generative models for particle/nuclear physics applications
have seen a rapid development in recent years [1, 2, 3, 4, 5, 6]. However, until recently, these models
have never been applied to calorimeter simulations.

In this paper, we explore point cloud generative models applied directly to cell-level information.
In other words, we take calorimeter images and compare state-of-the-art generative models that
represent the same inputs as either images or (zero-suppressed) point clouds. As a case study, the two
representations are compared using simulations of a high-granularity hadronic calorimeter, similar to
the design planned for the ePIC detector at the future Electron-Ion Collider [7, 8, 9].

2 Deep Learning Models

Diffusion models are a class of generative neural networks that allow for stable training paired with
high flexibility in the model design. Data is slowly perturbed over time using a time parameter
t ∈ R that determines the perturbation level. The task of the neural network is to approximate the
gradients of the log probability of the data, log pdata(x), or the score function ∇x log pdata(x) ∈ RD,
based on data observations x ∈ RD in the D-dimensional space. This can be approximated by a
denoising score-matching strategy [10]. In the implementation used in this paper, data observations
x ∼ pdata(x) are perturbed using a Gaussian kernel q such that xt ∼ q(xt|x) = N (xt;αtx, σ

2
t I),

with time-dependent parameters α and σ determining the strength of the Gaussian perturbation
to be applied. In the variance-preserving setting of diffusion processes, σ2

t = 1 − α2
t . For the

time-dependence, a cosine schedule is used such that αt = cos(0.5πt). The loss function to be
minimized is implemented using a velocity parameterization:

Lθ = Eϵ,t ∥vt − v̂t,θ∥2 , (1)

where the time-dependent network output with trainable parameters θ, v̂t,θ, is compared with the
velocity of the perturbed data at time t, vt ≡ αtϵ − σtx, with ϵ ∼ N (0, I). The score function is
then identified as

∇x log p̂θ(xt) = −xt −
αt

σt
v̂t,θ(xt). (2)

The data generation from the trained diffusion models is implemented using the DDIM sampler
proposed in Ref. [11] that can be interpreted as an integration rule [12] with update rule specified by:

xs = αsx̂θ(xt) + σs
xt − αtx̂θ(xt)

σt
. (3)

For a fair comparison, all diffusion models are trained using the same score-matching strategy and
fixed number of 512 time steps during sampling.
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The fast point cloud diffusion model (FPCD) follows [5], where a permutation equivariant estimation
of the score function is obtained by the combination of a DEEPSETS [13] architecture with attention
layers [14]. During the point cloud simulation, two models are also defined: one that learns the
number of non-empty cells, conditioned on the initial energy of the incoming particle, and one model
that learns the score function of the normalized point cloud, also conditioned on the momentum of
the particle to be simulated and the number of hits to be generated.

The model trained on the image dataset (CALOSCORE) is adapted from [15] with a few modifications.
Compared to the original implementation, the calorimeter simulation task is now broken down in
two diffusion models: one that learns only the energy deposits in each layer of the calorimeter,
conditioned only on the initial energy of the particle to be simulated, and one model that learns
to generate normalized voxels per layer, conditioned on the energy deposition in each layer and
the initial energy of the particle to be simulated. Additionally, the original U-NET [16] model is
combined with attention layers.

3 Detector and Data Descriptions

The DD4HEP framework [17] is used to run GEANT simulations of a high-granularity iron-scintillator
calorimeter based on previous designs for use in colliders [18, 8]). The sampling structure comprises
of 55 10× 10× 0.3 cm scintillator tiles sandwiched between 2.0 cm thick steel absorber plates. The
calorimeter is 1.2 meters long, with it’s front set at z=3.8 m. 1.7 million events of single π+ particles
are generated with momentum 1.0 < P < 125 GeV/c in rings within the detector (see Figure 1).

Dataset 1 and Dataset 2 used in training share the same parent GEANT simulation, such that the fast
point-cloud diffusion model and the image model are trained on different representations of the same
set of calorimeter showers.

Dataset 1 is stored as zero-suppressed point-cloud representation. The GEANT data is stored in files
containing two datasets, clusters and cells. The cluster dataset contains the PGen of the incident pion,
as well as the number of hits in the calorimeter. The cell data is comprised of a constant number of
200 cells per event. Each cell contains energy, x, y, and z coordinate values. Empty cells, or cells
with deposited energy below the threshold are 0-masked and ignored during training.

Dataset 2 is created by converting the point cloud dataset into an image format. Images at the full
granularity of the detector would be unrealistic for an real-world detector. For example, the detector
in [8], contains only 7 readout channels along the z-dimension, no where near 55. Additionally,
images at full resolution would result in an unmanageably large datasets (see Table 1), and would
represent the largest calorimeter image training ever done. The calorimeter cells were therefore
clustered into groups of 5 along each axis of the detector to create voxels, where 5× 5× 5 cells = 1
voxel. Energy in each of the cells making up the voxel were summed and assignd to the final voxel’s
total energy. The final image format consists of 11 × 11 voxels. A hit in the voxelized dataset is
defined as any voxel with energy deposition above threshold.

For the final comparison, generated samples from the point cloud model are voxelized using the
same method for Dataset 2. All comparisons are in this image format, at the same resolution of
11× 11× 11 voxels per image.

4 Results

A variety of distributions are used to evaluate the quality of the generated images. For all comparisons,
the Earth mover’s distance (EMD) [19], also known as the 1-Wasserstein distance [20], between
generated distributions and GEANT) distributions is calculated. The EMD score a distance-like
measure of the dissimilarity between two distributions. All EMD scores in Figures 2 are calculated
on the final voxelized distributions.

Table 1 shows the model size, size of each dataset, and time to generate 100k calorimeter showers.
The point cloud model is smaller by a factor of 4 compared to the image based model, and samples
events 3 times faster. Lastly, the point cloud dataset requires over 100 times less disk space than
the image format at full granularity. The AUC is obtained from a classifier trained to distinguish
the samples of both models only in the voxelized image format. Both models have very good AUC,
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Model # Parameters Disk Size (Full) Sample Time AUC

Image 2,572,161 1016MB (62GB) 8036.19s 0.673
Point Cloud 620,678 509 MB 2631.41s 0.726

Table 1: Comparison of model size, size of data representation on disk, generation time, and AUC of
the same classifier trained to distinguish between the model and the original GEANT showers. All
comparisons are done for 100k calorimeter showers. All results in the image row were obtained with
11× 11× 11 voxel images. Disk size of the image dataset at full granularity is shown in parenthesis.
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Figure 1: The 2-dimensional distribution of the mean deposited energy in 5th voxelized layer of the
calorimeter. The first column is the original Geant simulation. The second column is the fast point-
cloud based diffusion model (FPCD), and the 3rd column is the image-based model (CALOSCORE).

reasonably close to 0.5 where the classifier would be unable to distinguish between original simulation
and generated samples.

Figure 1 shows a qualitative assessment of the models using the 2-dimensional distribution of the
average energy deposition in a specific z-layer. All voxels with an expected energy deposition above
0 are populated in both the image and point cloud based models, with very few additional hits. The
qualitative similarities in each image in Fig 1 indicate that models reproduce the various showers
from the training dataset well.

Figure 2(a) compares the total energy deposited in the calorimeter. Both models are in good agreement
with GEANT at small deposited energies, deviating no more than 10%. At the highest deposited
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Figure 2: Comparison of point-cloud model (orange), image based model (grey-blue) and GEANT
(black). Sum of all voxel energies is shown in (a), the total number of voxel hits is shown in (b), and
the mean energy per z-layer is shown in (c). The dashed red lines in the bottom panels represent
the 10% deviation interval of the generated samples from the original GEANT simulation. The earth
mover’s distance (EMD) between each distribution and the GEANT distribution is also shown.
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energies, however, both diffusion models begin to fall away from GEANT, with the point-cloud model
generating less energy, and the image based model generating slightly more energy than GEANT.
Events in this region are rare, however, and statistical fluctuations begin to dominate even GEANT.
Figure 2(b) comparing total number of calorimeter hits. At low number of hits, both models show
good agreement with GEANT, with deviations slightly above 10%. At 15 or more hits, both models
begin to deviate well past 10%, with the point cloud model oversampling the number of hits, and the
image based model undersampling the number of hits.

Figure 2(c) shows the average deposited energy along z. The mean deposited energy in z-coordinates
in panel (c) show both models in very good agreement with the original GEANT predictions. The
z distribution shows the point cloud samples are systematically lower than the original GEANT
distributions. This indicates the point cloud model would benefit from learning the energy per layer
directly, as is done in the image model described Sec. 2.

5 Conclusion and Outlook

This work makes the first direct comparison between two score based generative models using either
images or point clouds as representations of the same calorimeter training data. Both models perform
well for most distributions, with very similar AUCs, but the image-based diffusion model invariably
has a lower EMD in each comparison to GEANT. Overall, the performance of the point-cloud
diffusion model is very close to the image model. This is despite the point cloud model being
disadvantaged: the second model in it’s architecture is not conditioned on the energy per layer, unlike
the image based model. At the same time, the point cloud model offers several advantages over the
image model: Vastly smaller dataset size - about 100x smaller at full resolution, individual cell hits
do not need to be summed in a voxelization procedure, resulting in information loss, and 3x faster
generation times.

This work establishes a benchmark for future research on generative models, offering valuable insights
into the challenges of modeling hadronic showers in highly granular calorimeters using image-based
techniques, while also exploring the potential of point-cloud methods. The current advantages of
point clouds, in combination with improvements to close the remaining performance gap described
earlier, will likely make point cloud based models a clear choice for highly granular calorimeters.
This work should serve as a reference for studies utilizing future calorimeters based on the CALICE
design, including those intended for use in CMS at the LHC and ePIC at the EIC.
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