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Abstract

High-energy cosmic rays are informative probes of astrophysical sources in our
galaxy. A main challenge is to separate gamma showers (extremely rare events of
interest) from the vast majority of hadron showers, when we have access to realistic
simulations of the shower production (forward process) but the prior distribution
on the shower parameters is unknown. Direct classification of the showers using
output data leads to biased predictions and invalid uncertainty estimates, since the
prior is chosen by design and is different from the true distribution. We overcome
these biases by proposing a new method that casts classification as a hypothesis
testing problem under nuisance parameters. The main idea is to estimate ROC
curves as a function of all nuisances, devising selection criteria that are valid under
a generalized prior probability shift over both shower label and nuisance parameters.
Our method yields a set-valued classifier that returns valid confidence sets for all
levels α simultaneously without having to retrain the classifier for each level.

1 Introduction

Problem Set-Up. Simulator-based inference (SBI) refers to inference in a setting where the likelihood
function L(x; θ) – often associated with a “theory” about a phenomenon, e.g. in the physical
sciences – is intractable. Whereas, it may be more feasible to simulate observable data X ∈ X and
generate large data sets TB = {(θ1,X1), . . . , (θB ,XB)} ∼ r(θ)L(x; θ). The likelihood L(x; θ) is
implicitly encoded by the “theory” or mechanistic model Fθ : θ 7→ X, but the prior over parameters
r(θ) = Ptrain(θ) is often chosen by design and different from the true distribution π(θ) = Ptarget(θ),
hence causing a possibly harmful bias. When the unknown parameter of interest is a categorical
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variable µ ∈ Y = {0, 1, . . . ,K}, and K is the number of classes, this difference in the joint
distribution of (θ,X) between train and target data is referred to as prior probability shift or label shift
[7, 8, 10]. Here we consider a generalized prior shift (GPS), where we assume a shift is happening
not only in the distribution of the label µ (the parameter of interest), but also in a range of other
parameters (nuisances or latent variables) ν ∈ N of the mechanistic model, where θ = (µ, ν). In
addition, we explicitly consider the case where the distribution over µ changes as a function of ν.

Motivating Application. High-energy cosmic rays both charged and neutral, are extremely informa-
tive probes of astrophysical sources in our galaxy and beyond. Neutral cosmic rays (gamma rays)
come from a specific direction and target in the sky; charged cosmic rays (hadrons, which are mostly
protons) come from any direction and are deflected by galactic magnetic fields. A vital step in analyz-
ing gamma-ray sources using ground-based detector arrays is to separate gamma(G)-induced showers
from the vast majority (>99.9%) of hadron(H)-induced showers based on ground measurements x.
The G/H separation problem is a challenging rare event detection problem under GPS, where the true
distribution π(µ, ν) of both the shower type µ and the shower parameters ν might be misspecified in
simulated data.

Challenge. If one directly classifies ground measurements x using a classifier trained on TB , both
the predictions and the associated uncertainty estimates will be biased, regardless of the amount of
training data and the capacity of the classifier. The bias occurs because the posterior probability
P′(µ = 1|x) induced by the design prior r(θ) is not the same as the true class probability P(µ = 1|x)
induced by π(θ). This discrepancy can result in poor estimates of standard metrics, like true and false
positive rates (TPR and FPR), and sub-optimal classification results. This problem is illustrated in
Figure 1 (left) for the cosmic shower-ray application.

Our Approach and Contribution. By casting classification under GPS as a hypothesis testing
problem with nuisance parameters, we are able to estimate TPR and FPR as continuous functions of
all nuisance parameters via monotone regression and compute ROC curves as a function of ν ∈ N .
We then derive selection criteria that are valid under GPS and obtain a set-valued classifier that returns
valid (1−α) confidence sets for all levels α simultaneously, given an arbitrary observation x, without
any additional re-training of the base classifier. To the best of our knowledge, this is the first work
that estimates ROC curves across the entire parameter space. Rather than using a surrogate likelihood
or likelihood ratio (see references in [1]), we base our results directly on P′(µ = 1|x). The ROC
calibration framework of Section 2.2 has some similarities to [4, 12], which use monotone regression
to estimate the CDF of probability integral transforms in predictive inference. The construction of
set-valued classifiers of Section 2.4 is inspired by [3, 6, 9].

2 Methodology

2.1 Hypothesis Testing with the Bayes Factor Test Statistic: General Notation

Let µ = 0 denote hadron-induced showers and µ = 1 denote gamma-ray induced showers. Our
goal is to discriminate atmospheric showers based on ground-based measurements x ∈ X . However,
rather than directly classifying x based on a learned classifier P′(µ = 1|x) and a cutoff C derived
from {(µi,xi)}Bi=1, we reformulate the gamma/hadron discrimination problem as a composite-versus-
composite hypothesis test:

H0,µ0 : θ ∈ Θ0 versus H1,µ0 : θ ∈ Θ1 (1)

where Θ0 = {µ0} × N , Θ1 = {µ0}c ×N , and µ0 ∈ {0, 1}. As test statistic, we exploit

τµ0
(x) =

P′(µ = µ0|x) P′(µ ̸= µ0)

P′(µ ̸= µ0|x) P′(µ = µ0)
. (2)

which is equivalent to the Bayes factor for test 8; see Appendix B. This quantity can be estimated
directly from a pre-trained classifier based on TB; there is no need for an extra step to, e.g., try to
learn the likelihood function L(x;µ, ν) or the associated likelihood ratio statistic from simulated data
as done in [1] and references therein.

2.2 Estimating the ROC Curves Across the Entire Parameter Space: Gamma/Hadron
Separation
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Figure 1: ROC dependence on shower parameters. Left: Empirical ROC curve for the entire
calibration set (gray; “All Energies”) and four tomographic bins over the calibration set according to
true energy. Each dot on each ROC curve represents the same numeric cutoff on τ̂(x); this cutoff
is chosen to achieve 0.05 FPR (vertical gray line) according to the “All Energies” curve. Right:
Estimated ROC curves at energy levels roughly matching the bins in the left plot. These curves
represent single energy values instead of ranges over bins.

For the case where H0 : µ = 0 versus H1 : µ = 1 (that is, µ0 = 0 in Equation 1), the estimated test
statistic τµ0

(x) defined by Equation 2 becomes

T (x) =
P′(µ = 0|x) P′(µ = 1)

P′(µ = 1|x) P′(µ = 0)
. (3)

We reject H0 (that is, classify the shower as gamma-induced) for small values of T (x) := (1 −
p(x))p1/(p(x)(1 − p1)) where p(x) := P̂′(µ = 1|x) denotes the classifier output, and p1 is the
proportion of µ = 1 instances in the train set.

To choose the optimal cutoff to reject H0, we need some knowledge of how the classifier performs
for different values ν of the nuisance parameters. For each cutoff C ∈ R, let IC(x) := I(T (x) ≤ C)
be the event that H0 is rejected (and the shower labeled as gamma-induced). The key insight is that
we can map out the receiver operating characteristic (ROC) of our test procedure over the entire
parameter space through a monotone regression that estimates the rejection probability functions

FPR(C; ν) := P (T (X) ≤ C | µ = 0, ν) = EX|µ=0,ν (IC(X) | µ = 0, ν) (4)

TPR(C; ν) := P (T (X) ≤ C | µ = 1, ν) = EX|µ=1,ν (IC(X) | µ = 1, ν) , (5)

for all C ∈ R and all ν ∈ N . At fixed ν, the ROC curve is defined as the true positive rate
(TPR) vs false positive rate (FPR) over the space of cutoffs C. Appendix C and Algorithm 1
detail our procedure for estimating the rejection probability curves using calibration data T ′

B =
{(θ′1,X′

1), . . . , (θ
′
B ,X

′
B′)} ∼ r(θ)L(x; θ).

2.3 Selecting the Optimal Cutoff C under Generalized Prior Shift (GPS)

Once we have estimated the ROC curves as in Section 2.2, we can find the cutoff C for a new test
point that either controls type-I error (FPR), or guarantees a minimum recall (TPR), or maximizes
some merit function of choice that depends on both FPR and TPR. To achieve type-I error control
at some pre-specified level α ∈ [0, 1], one could for example choose Cα,0 = infν∈N FPR−1(α; ν).
Such a cutoff however is often overly conservative. An alternative approach, which leads to tighter
constraints, is to first compute a (1 − γ) confidence set R(x; γ) of ν at some level γ ∈ [0, α], e.g.
using the techniques in [2, 3]. Then choose

C∗
α,0(x) = inf

ν∈R(x;γ)
FPR−1(β; ν), (6)

where β = α − γ. This cutoff guarantees a FPR of at most α for any ν ∈ N , whereas directly
predicting µ from x would not. Similarly, choosing a cutoff C̃∗

α,1(x) = supν∈R(x;γ) TPR
−1(β; ν)

guarantees that the recall (TPR) is at least α. See Lemma 1 and proof in Appendix D.
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2.4 Constructing Set-Valued Classifiers at Arbitrary Confidence Levels

Rather than just outputting a single label (G/H) for a particular shower, our framework provides valid
measures of uncertainty under GPS and allows one to (i) rigorously quantify the evidence in favor of
a shower being gamma-induced, and (ii) determine for which x the predicted labels are ambiguous.
As mentioned, the probabilities P′(Y = 1|x) can lead to misleading answers under GPS. Hence,
we instead report the output of a set-valued classifier H : x 7→ {∅, 0, 1, {0, 1}}, where the classifier
guarantees user-defined levels of coverage (1− α) or confidence (the probability that the true label
is included in the set), no matter what the true class µ and the nuisance parameters ν are. At high
levels of confidence, the classifier will report {0, 1} for ambiguous instances x, instead of forcing a
0 or 1 answer that has a high chance of being wrong. Section 3.2 shows illustrative examples, and
Appendix D includes proofs of conditional coverage for the set-valued classifier given by

H(x;α) =
{
µ0 ∈ {0, 1} | τ̂µ0

(x) > C∗
α,µ0

(x)
}
, (7)

where C∗
α,µ0

(x) = infν∈R(x;γ) W
−1
µ0

(β; ν) with the power function Wµ0
defined as in Equation 10

of Appendix C with µ = µ0, and β = α− γ.

3 Results: Gamma/Hadron Separation of Atmospheric Cosmic-Ray Showers

Data and Simulations We simulate cosmic ray showers using CORSIKA [5]. The shower parame-
ters θ = (µ,E,Z,A) include the identity µ, energy E, and the incident angles (Z,A) of the cosmic
ray (primary particle). The output x denotes the measurements of all secondary shower particles
that reach the ground. In our analysis, we treat the incident angles as known since they are easily
reconstructed from sensor measurements; that is, the energy E is the only unknown latent variable
(ν = E). From a total of 40,000 simulated showers, we construct the train set (to estimate τµ0

(x)),
the calibration set (to estimate Ŵµ(C; ν)) and the test set (for evaluation and diagnostics) with sizes
20,000, 10,000 and 10,000, respectively. We fit τ̂µ0

(x) and Ŵµ(C; ν) using shallow multi-layer
perceptrons (MLP), where the model for Ŵµ(C; ν) enforces monotonicity in C [11].

3.1 ROC Across the Entire Parameter Space

Nuisance parameters affect the performance of the classifier and the relative merits of different
classifiers. Figure 1, left, shows how the ROC curve and subsequent FPR/TPR of the classifier depends
on other shower parameters such as energy E. If we select the cutoff C based on P′(Y = 1|x) alone
without regard to E, then we fail to achieve the nominal FPR or TPR conditional on particular energy
ranges. The procedure detailed in Section 2.2 allows us to estimate an ROC curve for any ν ∈ N
(see right panel), and hence choose the correct cutoff C according to Section 2.4. Appendix E shows
evidence that our ROC curves are indeed well calibrated.

3.2 Set-Valued Classification

Figure 2 shows the results of the set-valued classifier H(x;α) defined in Equation 7. For simplicity,
in this work we set γ = 0 (i.e., we do not attempt to estimate ν given x, hence the cutoff Cα in
Equation 6 is computed by taking the infimum over the entire nuisance parameter space N ). The
output is compared to results from the optimal Bayes classifier hB , which yields hB(x) = 1 if
P̂′(µ = 1|x) > P′(µ = 1), and hB(x) = 0 otherwise. Figure 2, left panel demonstrates how H(x;α)
labels points close to the Bayes decision boundary (i.e. ambiguous points) as {0, 1}, with more points
labeled as ambiguous, as the confidence level increases. The center panel shows that the set-valued
classifier performs much better than the optimal Bayes counterpart by achieving higher precision
(positive predictive value; blue curve) and lower false discovery rate (orange curve). This is partly
because the set classifier opts to categorize instances as “ambiguous”, rather than incorrectly label
difficult cases. The right panel shows that the set classifier also achieves a lower FNR (miss rate;
orange curve) than optimal Bayes, but the TPR (recall; blue curve) is lower at higher confidence
levels.

Appendix G verifies that our set-valued classifiers guarantee nominal coverage, even when we are
not estimating ν (that is, we set γ = 0), whereas set-valued classifiers that ignore GPS fail to control
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Figure 2: Set classification output H(x;α) (denoted "SetCLF") for different confidence levels,
compared to optimal Bayes classifier hB(x) (denoted "BayesOpt"). Left: Decision regions for
H(x;α) as a function of confidence level. The hB(x) decision boundary is shown as reference, where
hB(x) = 1 above the boundary. Center: Proportion of actual G-showers (µ = 1) and H-showers
(µ = 0) among instances labeled or “predicted” as gamma showers. As the confidence level increases,
precision (blue) increases and FDR (orange) decreases, reflecting the fact that SetCLF can choose not
to output singleton predictions if the data are ambiguous. Right: Proportion of different classifier
outputs for true gamma showers (µ = 1). We achieve a lower miss rate (orange) at all confidence
levels, but don’t perform as well in terms of recall (blue) compared to BayesOpt at higher confidence
levels.

type I errors. However, our classification results tend to be overly conservative, hence the lower
TPR (or lower power). In future work, we can increase the power with larger train and calibration
sets, which would also allow us to constrain ν with (1 − γ) confidence sets for γ > 0, while still
guaranteeing user-defined levels of coverage; see Lemma 1 in Appendix D.

Broader Impact Statement. Systematic uncertainties due to model mis-specifications and nuisance
parameters is a challenging problem for classification and rare event detection problems, especially in
the physical sciences. This paper introduces a new method for handling prior probability shift of both
label and nuisance parameters in simulation-based inference with a high-fidelity mechanistic model.
We demonstrate a new technique for estimating the ROC across the entire parameter space. We
also show how we can create set-valued classifiers that have a guaranteed user-specified probability
(1 − α) of including the true label (parameter of interest), for all levels α ∈ [0, 1] simultaneously,
without having to retrain the model for every α. These set-valued classifiers are valid, no matter
what the true label and unknown nuisance parameters are, whereas classifiers that ignore GPS are
not. We only consider one nuisance parameter in the paper, but the proposed framework scales to
high-dimensional nuisance parameter spaces.
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A Experimental Set-Up with Ground-Based Detector Arrays

Figure 3: Left: Artistic representation of the SWGO array. The inlay shows the individual detector
unit. Right: Although we have access to all secondary particles in our simulated cosmic ray showers,
we only include the particles that hit our simulated detector setup (blue rectangles) in the analysis.
This layout pictured here is an illustrative example.

The data used in this paper are generated via the CORSIKA cosmic ray simulator [5]. CORSIKA is a
Monte Carlo simulation program that models the interactions of primary cosmic rays with the Earth’s
atmosphere. Given values of the parameters µ,E,Z,A, which define the primary cosmic ray identity,
energy, zenith and azimuth angle, respectively, CORSIKA outputs the identities, momenta, positions,
and arrival times of all secondary particles generated in the atmospheric shower, that eventually reach
the ground and that are mostly muons, electrons and photons at gamma-ray energies with minor
abundance of heavier particles.

The measured data x in our analysis does not incorporate the full shower footprint, as this level
of information cannot be captured in any realistic scenario. Instead, we simulate a simple 6 × 6
detector grid, where each detector covers a 2× 2 m2 area, with 48 m detector spacing. Information
for a secondary particle of a particular shower footprint is incorporated into the analysis only if
that secondary particle lands within the area of a detector. See Figure 3 (right) for a simplified
representation of the detector grid.

We assume 100% detector efficiency and that all secondary particles types are detectable. We also
assume that showers always originate at the center of the detector grid. Finally, we assume that both
the zenith and azimuth angles Z and A are known due to the relative ease with which they can be
estimate from observed footprint data. Thus, our only nuisance parameter for inference on µ is the
energy E of the cosmic ray.

The data used to estimate the test statistic are drawn according to the following distribution (which
may be different from that of actual astrophysical sources):

1. Gamma ray to Hadron ratio 1:1 (whereas actual observed ratios are in the range 1:1,000 –
1:100,000)

2. Energy between 100 TeV and 10 PeV, with probability density proportional to E−1 for
gamma rays and E−2 for hadrons (with standard astrophysical sources closer to between
-2:-4)

3. Zenith uniformly distributed between 0 and 65 degrees

4. Azimuth uniformly distributed between -180 and 180 degrees

To derive xi, we first define four secondary particle groups: photons (neutral); electrons and positrons;
muons (charged); and all other secondary particle types. Then for each simulated detector, we record
the count of particles in each group that hit the detector. This results in a vector of length 4 · 36 = 144
for each primary cosmic ray that represents the detector data. We construct xi by concatenating the
detector data with Zi and Ai.

For the calibration and test sets, we use the same reference distribution.
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B The Bayes Factor as a Frequentist Test Statistic

In this work, we treat the Bayes factor as a frequentist test statistic, similar to the Bayes Frequentist
Factor (BFF) method in [3]. Consider the composite-versus-composite hypothesis test:

H0,µ0
: θ ∈ Θ0 versus H1,µ0

: θ ∈ Θ1 (8)

where Θ0 = {µ0} × N , Θ1 = {µ0}c ×N , and µ0 ∈ {0, 1}. The Bayes factor of the test is defined
as

τµ0
(x) :=

P′(x|H0,µ0
)

P′(x|H1,µ0)
=

∫
N L(x;µ0, ν) r(ν|µ0) dν∫

N L(x;µ ̸= µ0, ν) r(ν|µ ̸= µ0) dν

By Bayes theorem,

τµ0(x) =

∫
N

p′(µ0,ν|x)
p′(µ0,ν)

r(ν|µ0) dν∫
N

p′(µ̸=µ0,ν|x)
p′(µ̸=µ0,ν)

r(ν|µ ̸= µ0) dν

=

∫
N

p′(µ0,ν|x)
P′(µ=µ0)

dν∫
N

p′(µ̸=µ0,ν|x)
P′(µ̸=µ0)

dν

=
P′(µ = µ0|x) P′(µ ̸= µ0)

P′(µ ̸= µ0|x) P′(µ = µ0)
. (9)

However, unlike BFF, we are not estimating the likelihood or odds from simulated data, but instead
directly evaluate a pretrained classifier P′(µ = 1|x).

C Estimating the Power Function

Definition 1 (Power Function). Consider the composite-versus-composite hypothesis test H0,µ0

(Equation 8) with the test statistic τµ0
(x) (Equation 9). For µ ∈ {0, 1}, ν ∈ N , and C ∈ R, the

power function of the test is defined as

Wµ(C; ν) := Pµ,ν (τµ0(x) ≤ C) . (10)

We learn Wµ(C; ν) using a monotone regression that enforces that the power is a non-decreasing func-
tion of C. For each point i (i = 1, . . . , n) in the calibration sample Dµ = {(ν1,X1), . . . , (νn,Xn)}
(generated at fixed µ), we choose a set of K cut-offs from a grid G = {C1, . . . , CK} of K uniformly
spaced quantiles of λ(Xi) for Xi ∈ Dµ Then, we regress the random variable

Yi,j := I (τ̂µ0
(Xi) ≤ Cj) (11)

on both νi and Ci,j (= Cj) using the augmented calibration sample D′
µ = {(νi, Ci,j , Yi,j)}i,j , for

i = 1, . . . , n and j = 1, . . . ,K. See Algorithm 1 for details.

D Selecting the Cutoff C under the Presence of Nuisance Parameters

Let T (x) be a test statistic for H0 : µ = 0, and let ν ∈ N denote the nuisance parameters.

Definition 2 (Confidence set for nuisance parameters). Let µ0 ∈ {0, 1} and let γ ∈ [0, 1]. The
random set Rµ0

(x; γ) is a valid (1− γ) level confidence set for ν at fixed µ0, if

Pµ0,ν0
(ν0 ∈ Rµ0

(X; γ)) = 1− γ, ∀ν0 ∈ N . (12)

Definition 3 (Type I error control). For each ν0 ∈ N and level β ∈ [0, 1], let Cν0 be such that

Pµ0=0,ν0 (T ≤ Cν0) = β.

Let
C∗(x) = inf

ν0∈R0(x;γ)
{Cν0

}, (13)

where R0(x; γ) is a (1− γ) level confidence set for ν when µ0 = 0.

8



Algorithm 1 Learning the Power Function
Require: true class label µ ∈ {0, 1}; test statistic λ; calibration data Dµ = {(ν1,X1), . . . , (νn,Xn)}; grid of
cut-offs G = {C1, . . . , CK}; evaluation points V ⊂ N
Ensure: Estimate of power function Wµ(C; ν) for all ν ∈ V

1: // Learn power function from augmented calibration data D′

2: Set D′ ← ∅
3: for i in {1, ..., n} do
4: for j in {1, ...,K} do
5: Compute Yi,j ← I (λ(Xi) ≤ Cj)
6: Let D′ ← D′ ∪ {(νi, Cj , Yi,j)}
7: end for
8: end for
9: Use D′ to estimate Wµ(C; ν) := Pµ,ν (λ(X) ≤ C) via a regression of Y on ν and C, which is

monotonic w.r.t. C.
10: return estimated rejection probabilities Ŵµ(C; ν), for C ∈ G and ν ∈ V

Definition 4 (Minimum precision). For each ν0 ∈ N and level β ∈ [0, 1], let C̃ν0 be such that

Pµ0=1,ν0

(
T ≤ C̃ν0

)
= β.

Let

C̃∗(x) = sup
ν0∈R1(x;γ)

{C̃ν0
}, (14)

where R1(x; γ) is a (1− γ) level confidence set for ν when µ0 = 1.

Lemma 1. Choose a threshold α ∈ [0, 1] and γ ∈ [0, α]. Let Rµ0
(x; γ) be a valid (1 − γ) level

confidence interval for ν at fixed µ0 ∈ {0, 1} according to Equation 12. Let β = α− γ, and define
C∗(x) according to Equation 13. Then, for all ν0 ∈ N ,

Pµ=0,ν0
(T ≤ C∗(X)) ≤ α (type I error control)

Similarly, if we let β = α+ γ and define C̃∗(x) according to Equation 14, then for all ν0 ∈ N ,

Pµ=1,ν0(T ≤ C̃∗(X)) ≥ α (minimum precision).

Proof. Notice that

Pµ=0,ν0
(T ≤ C∗(x)) = Pµ=0,ν0

(T ≤ C∗(x), ν0 ∈ R0(X; γ)) + Pµ=0,ν0
(T ≤ C∗(x), ν0 /∈ R0(X; γ))

≤ Pµ=0,ν0
(T ≤ Cν0

) + Pµ=0,ν0
(ν0 /∈ R0(X; γ))

≤ β + γ = α.

Similarly,

Pµ=1,ν0
(T ≥ C̃∗(x)) = Pµ=1,ν0

(T ≥ C̃∗(x), ν0 ∈ R1(X; γ)) + Pµ=1,ν0
(T ≥ C̃∗(x), ν0 /∈ R1(X; γ))

≤ Pµ=1,ν0(T ≥ C̃ν0) + Pµ=1,ν0(ν0 /∈ R1(X; γ))

≤ 1− β + γ = 1− α,

and therefore

Pµ=1,ν0
(T ≤ C̃∗(x)) ≥ α
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Figure 4: Consistency check of estimated TPR and FPR functions for our approach, compared
to an approach that ignores nuisance parameters. Probability-Probability plots to assess how well
the estimated power function Ŵµ(C; ν) fits the test data for each shower type µ (rows) in tomographic
energy bins (columns). Here, we only show results for the test statistic τµ0=0. The blue curves are
generated by estimating the marginal power function W ′

µ(C) that averages over different values of ν
the marginal power function W ′

µ(C) that averages over different values of ν (we take the empirical
CDF of τµ0

(x) over the calibration set as an example). We then divide the test data into bins based
on energy. On the y-axis, we plot the values of Ŵ ′

µ(τ(xi)) for each xi in that bin, and on the x-axis
we plot the theoretical values of W ′

µ(τ(xi)) if TPR and FPR did not depend on ν (which would then
follow a uniform distribution). We see that this assumption is not supported by the data, in particular
for gamma showers at very low or high energies. We repeat the same procedure for Ŵµ(τ(xi); νi)
for each (xi, νi) in the test set and find that our approach (orange) better aligns with the observed
data than the approach that ignores nuisance parameters (blue).
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Figure 5: Set classification output H(x;α) (denoted "SetCLF") for different confidence levels,
compared to optimal Bayes classifier hB(x) (denoted "BayesOpt"). Left: Proportion of actual
G-showers (µ = 1) and H-showers (µ = 0) among instances labeled or “predicted” as hadron
showers. Right: Proportion of different classifier outputs for true gamma showers (µ = 1).
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Figure 6: Empirical coverage of set-valued classifiers. For the true gamma showers (left panel)
and true hadron showers (right panel), we divide each group into four bins according to true shower
energy. We then check that H(x;α) (denoted "SetCLF" in the plots) achieves nominal coverage
(black dotted lines) for both G/H-showers and at each energy bin. We compare this to an approach
that attempts to control FPR without accounting for nuisance parameters (orange dashed line). We
see that our approach is always valid (though sometimes also overly conservative), whereas ignoring
nuisance parameters may lead to severe under-coverage, especially for gamma showers at lower
energies
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