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Abstract

We identify rare and visually distinctive galaxy populations by searching for struc-
ture within the learned representations of pretrained models. We show that these
representations arrange galaxies by appearance in patterns beyond those needed to
predict the pretraining labels. We design a clustering approach to isolate specific
local patterns, revealing groups of galaxies with rare and scientifically-interesting
morphologies.

1 Introduction

Astronomers often focus on specific classes of galaxy that have been particularly affected (or
unaffected) by a process of interest [1, 2, 3, 4]. These classes may be extremely rare; ‘jellyfish’
galaxies, for example, are only reliably identified in dense cluster environments [5, 6].

It has recently become possible to automatically search for rare galaxy classes by manually identifying
a small set of examples and then finetuning a pretrained model to search for more examples at scale.
The most frequently-used galaxy model library is Zoobot [7], a set of models trained on 92M
responses by Galaxy Zoo volunteers [8] answering a diverse set of classification tasks. By jointly
predicting responses to all of these tasks, Zoobot’s encoder learns to assign visually similar galaxies
to similar points in representation space [9]. One can then straightforwardly (e.g. with a linear head)
identify areas of representation space containing known examples of the target rare galaxy class.

But what if there are galaxy classes which are so rare we don’t know to look for them? Here, we
reverse the finetuning workflow and instead identify rare classes of galaxies directly from Zoobot’s
representation, without any known examples.

Walmsley et al. [9] suggested that the representation learned by Zoobot may arrange galaxies in
patterns beyond those required to predict the supervised labels. Our approach here will both prove
this thesis and demonstrate that, beyond being grouped by similarity, variations in the density of
galaxies within that representation can be exploited to reveal new subclasses.

Our aim of finding rare galaxy classes is related to anomaly-finding. Unlike standard anomaly-finding
[10, 11, 12], we explicitly aim to identify anomalies with multiple examples; a one-off strange galaxy
is a puzzle, but a set of them is a new population.

Our aim is also related to the topic of data-driven galaxy classification schema. Astronomers often
divide all galaxies into broad (i.e. not rare) classes and then compare their features. The most
‘meaningful’ criteria with which to define these broad classes is a matter of decades-long debate
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[13]. Much work has been done to uncover alternative data-driven criteria both before [14] and with
[15, 16] machine learning, but these alternative criteria are rarely used in practice. Our method is not
intended to describe galaxies in general - less than 2% of all galaxies studied here fall in one of our
classes - but rather aims to isolate rare and visually distinctive classes within the bulk sample.

2 Data

We begin with the public pretrained models available from the Zoobot model library. We run all
experiments with both the EfficientNetB0 and MaxViT Tiny architectures (224px, three-channel) to
test if adding multi-axis attention blocks alters the representation learned [17, 18, 19]. These models
have been referred to [7] as galaxy ‘foundation’ models, in that they are pretrained on a diverse task
and extensive training data in order to learn an adaptable representation, but we highlight that have
relatively few parameters; EfficientNetB0 and MaxViT Tiny are both low-parameter variants of their
respective model families.

We construct our initial representations by applying the pretrained MaxViT Tiny and EfficientNetB0
Zoobot models to images from the DESI Legacy Surveys [20]. Our base catalog is the 8.7M galaxies
of suitable brightness (r < 19.0) and angular extent (Petrosian radius > 3”) to have well-resolved
features [21].

We use the predicted morphology labels (from the EfficientNetB0 model, for consistency) to auto-
matically remove featureless (‘Smooth’ response probability ≥ 50%) and edge-on (‘edge-on disk’
≥ 30%) galaxies before applying our search method. Naively applying our search method to this
sample returns many clusters of artifacts (e.g. images contaminated by telescope issues). We are
primarily interested in rare galaxies, not rare image issues, so (outside of a final experiment, Sec.
4) we remove these (‘artifact ≥ 30%) but note that flagging contaminated images may be a further
useful application of our search method. Our final sample is 632k DESI Legacy Survey images of
featured galaxies.

3 Methods

The representation dimensionality of the published MaxViT Tiny and EfficientNetB0 architectures
is 1024 and 1280, respectively. Motivated by a PCA analysis of the representation variance in the
original networks, showing that the representations are highly redundant, we find we can retrain these
networks using a lower representation dimension of 128 without any measurable performance loss.
We refer to our adjusted networks as ‘bottlenecked’ networks.

We then apply dimensionality reduction to further compress our representation before searching for
clusters in the compressed space. This approach is more obviously useful for an unsupervised or
semi-supervised representation, because, if you have plentiful labels, one can instead simply train an
end-to-end supervised model to predict those labels. However, here, our labels describe the features
that each galaxy has (spiral arms, bars, etc.) but do not assign them classes. Accurately predicting
these labels is therefore not sufficient to identify rare galaxy populations; they need to be clustered
into classes.

Clustering within the representation is non-trivial. Supervised representations of galaxies have
previously been noted as broadly smooth and naive clustering as unsuccessful [9]. We hypothesise
that this global smoothness masks small-scale detailed structure and design our clustering approach
to identify this structure.

We first reduce the bottlenecked representation dimensionality with UMAP [22]. We then construct a
tree of candidate clusters with HDBSCAN [23] and post-process that tree for our final clusters.

UMAP’s n_neighbours sets the local connectivity of the force-directed graph. Each point (node) has
edges to the closest n_neighbours, and those edges apply forces weighted by distance. To find rare
subclasses, n_neighbours must be large enough that small clusters can form but small enough that
those clusters are not ‘torn apart’ by numerous non-cluster neighbours. We find n_neighbours= 50
provides a good balance for our goal of finding rare galaxy subtypes.

UMAP’s n_components sets the final dimensionality and hence the typical separation of galaxies.
Reducing to D = 2 preserves only the most noteable clusters (though is useful as a visualisation aid).

2



Reducing to D = 15 leads to qualitatively less persuasive clusters, likely because of sparsity2. We
find D = 5 provides a good balance for our dataset size.

We next apply HDBSCAN to identify clusters in the reduced representation. HDBSCAN is typically
used to identify well-separated clusters of significant size. To identify only confident clusters, we
adjust the denoising distance transformation (‘core distance’) by setting min_samples= 300. We
also set min_cluster_size= 10 to allow for rare classes. To allow for variable size clusters, we
define clusters as the leaf nodes in HDBSCAN’s condensed tree rather than the typical ‘stable’
(excess-of-mass) nodes.

This configuration is able to identify small clusters within the smooth bulk sample, but at the cost of
further splitting larger clusters. A hyperparameter search identifies no single λ or ϵ threshold that
selects small clusters without splitting larger clusters, and so instead we simply note that manually
grouping visually similar clusters is trivial if required (all clusters presented here are shown as-found
without manual intervention).

4 Results

Fig 1 shows classes identified directly from Zoobot’s representation using our search method. Our
classes reveal visually cohesive groups of galaxies with rare morphologies. Our data-driven search
identifies these without expert astronomer direction.

Several of our classes have not previously been automatically detected or studied at scale. Most
notably, class D shows a population of galaxies with dominant bars and irregular clumpy spiral
structure (likely low-mass and starforming).

The classes are split in ways not obviously motivated by the supervised labels. For example, with
class D (described above), the Galaxy Zoo labels on which Zoobot was trained include bar and spiral
arm measures but do not specify if those spirals are irregular or clumpy. Similarly, class A shows
‘shredded’ spiral galaxies which have been mistakenly recorded by the DESI pipeline as several
sources - a distinction not present in the Galaxy Zoo labels.

To prove that the representation does indeed group galaxies independently of the training labels,
we run our search method on our sample prior to removing galaxy images (Sec. 2). The response
‘Artifact’ is a leaf in the Galaxy Zoo decision tree and so the labels include no further information
on which type of artifact an image might be. Nonetheless, our search method reveals (Fig 2) that
Zoobot’s representation is arranging artifacts by visual appearance. This directly demonstrates the
internal emergence of classes beyond those needed for predicting training labels.

5 Discussion

Quantitative comparisons with existing methods are not possible because, to our knowledge, there are
no previous works attempting to extract rare galaxy subclasses from a deep representations. Further,
there is no commonly-accepted definition for what might constitute anomalies or anomaly subclasses.
Standard benchmarks for this task (or for similarity metrics in general) would help advance the field.

Our representation is broadly resistant to clustering. Most galaxies (95%+) cannot be confidently
assigned to clusters, even with generous HDBSCAN mutual reachability distance settings. Adding a
loss term to encourage preserving density (‘densmap‘) further smooths the compressed representation.
Whether this limited clustering is a consequence of the nature of supervised representations (and
perhaps self-supervised representations e.g. [24]) or induced by our compression process remains
to be seen. Altering the training process (e.g. with a hybrid self/supervised approach, [25]) or the
compression process might lead to more easily clustered representations. Alternatively, a continuous
user-guided search algorithm may work better.

6 Conclusion

We have proven that the representation learned by the Zoobot pretrained galaxy models groups
visually similar galaxies together - even where those patterns are definitively independent of the

2A 15D latin hypercube of 630k galaxies would have approx. 2.4 galaxies per dimension.
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Figure 1: Selected galaxy classes identified within Zoobot’s representation (EffNetB0 architecture).
Notable examples include low-mass barred (D) and unbarred (E) galaxies, galaxies with clear low
surface brightness structure (F), one-armed spirals (G) and merging pairs (I). Class A is reveals a
DESI pipeline issue where extended clumpy spirals are ‘shredded’ into many sources.

Figure 2: Selected artifact classes identified within Zoobot’s representation (MaxViT architecture).
Zoobot’s representation places artifacts into visually distinct classes, even though Zoobot’s pretraining
labels do not distinguish between different types of artifact.
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pretraining labels. Further, we have shown that this grouping of similar galaxies leads to patterns
(overdensities) which can be exploited to identify new subclasses. We applied UMAP and tuned
HDBSCAN clustering to extract these patterns. Our clustering reveals groups of galaxies with rare
and distinctive morphologies. Some of these groups have not previously been automatically identified
or studied at scale; for example, low-mass barred galaxies with clumpy irregular spiral structure. We
hope this simple search technique will help astronomers discover new unexpected populations of
galaxies that shed light on the processes driving galaxy formation.

Bottlenecked
Zoobot

UMAP

Forward pass

HDBSCAN

Representation

(D=128)

Reduction

(D=5)

Clusters

Figure 3: Schematic of search approach. Galaxy images are passed through pretrained Zoobot model,
modified to use a D=128 feature bottleneck. Resulting representation is compressed via UMAP then
clustered with HDBSCAN.
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