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Abstract

Thorough analysis of local droplet-level interactions is crucial to better under-
stand the microphysical processes in clouds and their effect on the global climate.
High-accuracy simulations of relevant droplet size distributions from Large Eddy
Simulations (LES) of bin microphysics challenge current analysis techniques due
to their high dimensionality involving three spatial dimensions, time, and a con-
tinuous range of droplet sizes. Utilizing the compact latent representations from
Variational Autoencoders (VAEs), we produce novel and intuitive visualizations
for the organization of droplet sizes and their evolution over time beyond what is
possible with clustering techniques. This greatly improves interpretation and allows
us to examine aerosol-cloud interactions by contrasting simulations with different
aerosol concentrations. We find that the evolution of the droplet spectrum is similar
across aerosol levels but occurs at different paces. This similarity suggests that
precipitation initiation processes are alike despite variations in onset times.

1 Introduction

Understanding and accurately representing cloud processes in numerical models is crucial for im-
proving weather and climate predictions. Cloud droplets and their size distributions play a significant
role in various atmospheric phenomena, such as radiation and precipitation initiation, making their
characterization essential. However, complete simulation of these processes remains prohibitive in
numerical models of the atmosphere due to their high complexity and small physical scale. Instead,
cloud physics are represented through parameterizations, greatly simplified processes that often
rely on assumptions about the shape of cloud droplet distributions over volumes and the size of a
numerical model’s grid cell, which remain largely under-verified using observations.

Numerical simulations with more sophisticated cloud microphysics parameterizations (i.e., relying
on fewer or no assumptions about the shape of droplet distributions) are used to inform the next
generation of cloud physics models. The motivation for this study arises from the need to efficiently
and effectively summarize the simulated droplet distributions from a pioneering set of Large Eddy
Simulations of shallow clouds. These simulations provide droplet bin masses for every grid cell at a
relatively high temporal frequency. While previous studies have employed clustering algorithms on
observed droplets for this task (e.g., Allwayin et al. [1]), these methods pose challenges for our data
due to their sheer size. We are inspired by recent advancements in machine learning, particularly
Variational Autoencoders (VAEs), which have shown promise in capturing patterns in complex
climate datasets while preserving physical interpretability [2–4]. Our main contributions include:

• We propose a new way to visualize high-dimensional, spatio-temporal droplet size distribu-
tions by a VAE-based approach, representing droplet distributions through color spectra.

• We characterize the transition of droplet distributions from ambient to precipitating.
• Our analysis confirms that aerosol concentrations may delay precipitation onset.
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Figure 1: The time evolution of the spatial organization of droplet size distributions in simulations of
shallow clouds at a base aerosol level. Color represents latent space location as defined in Section 3
and thus indicates distribution characteristics. Precipitating regions appear only at later times.

1.1 LES Simulations

Several LES simulations were run under different meteorological conditions using the PINACLES
model [5]. For the sake of brevity, we focus our analysis on simulations of warm clouds in the
trade cumuli regime based on the ATEX campaign [6]. We note that our methodology is applicable
to a broader set of simulations which also includes, for example, nocturnal stratocumulus based
on the DYCOMS campaign [7]. In all simulations, microphysical processes are resolved using the
Fast Spectral Bin Microphysics version 2 [8], which defines cloud droplet size distributions (DSDs)
using 33 mass-doubling bins up to a maximum diameter of 6.5 mm. They are run for 8 hours of
simulated time with an internal timestep of roughly 1 second. Three-dimensional snapshots of the
25.6×25.6×3 km doubly periodic domain (with a grid resolution of 40m) are taken every 10 minutes.
Three separate simulations are run at half, base, and double the published aerosol concentrations as
prescribed for the RICO study [9], allowing us to isolate and analyze cloud-aerosol interactions. For
computational efficiency, we discard all DSDs associated with clear air, i.e. whose summed mixing
ratio (mass of liquid per unit of dry air) falls below a threshold of 10−5. Furthermore, whenever
DSDs are used as input to neural networks, their summed mixing ratio is normalized to 1. This allows
for faster and more stable learning and avoids giving less importance to DSDs with less mass.

2 Variational Autoencoder and Learned Representation

A recent study by Lamb et al. [10] suggests that droplet collision-coalescence, which is the most
important processes governing the time evolution of DSDs, has an inherent dimensionality of 3.
This motivates the use of a learned 3-dimensional representation, which empirically captures all
important characteristics, even in our more complex setting including spatial interaction and aerosols.
Specifically, we use Variational Autoencoders (VAEs) [11], which are generative latent variable
models that can be fit to data D = {x1, . . . ,xn}, learning both a low-dimensional representation
of data samples and enabling controlled generation of new data. In contrast to non-stochastic
autoencoders this allows us to find more robust representations that better generalize to new samples
and to quantify data variability and model uncertainty. To this end, we define a joint likelihood over
data x and a lower-dimensional latent variable z, where z informs a complex conditional distribution
pθ(x|z) over the data domain – in our case, a Gaussian distribution whose mean is parameterized
by a feed-forward neural network (MLP) µθ(z) (the variational decoder). To fit this model to data,
we use amortized variational inference to minimize the negative evidence lower bound (NELBO)
Lθ(q), which uses a Gaussian approximation qψ (with mean gψ(xi) and hψ(xi) parameterized using
MLPs) to the posterior pθ(z|x) to tightly bound the intractable negative marginal likelihood from
above. This is equivalent to minimization with the loss

Lθ,ψ(x) = Ez∼qψ

[
1

2
∥x− µθ(z)∥22

]
+ βKL(qψ(z) ∥ p(z))

so that suitable parameters (θ, ψ) can be found with stochastic gradient-based optimization techniques.
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Figure 2: a) The joint VAE latent space over all time steps and aerosol levels. Color represents latent
space location as defined in Section 3. The red arrow marks the pathway of precipitation, retrieved
based on the latent space evolution through time. b) Evolution of the droplet size distributions along
the pathway, from ambient to precipitating distributions.

Figure 2a illustrates the latent space of our final model showing the point cloud of encoded latent
representations for all DSDs across all time steps and aerosol levels. Encoded points close in this
latent space directly correspond to DSDs with similar characteristics so that the spatial organization
in the latent space meaningfully represents the inherent structure present in the data. Specifically,
we observe that the regions with high point density form a highly connected continuum, indicating
the presence of a very continuous transition between DSDs of different characteristics, even in
distribution space. We identify a large, homogeneous, and roughly spherical region centered at zero
that smoothly transitions into a separate narrow filament structure that traces a path with a sharp bend.

3 Visualization and Insights

Representing the 3D latent space location with colors, we can assign continuous labels to different
regions to permit a 1D interpretation of latent space “neighborhoods” without any clustering or
information loss. Specifically, we make use of the fact that color itself can be described using a
three-dimensional spectrum and map the latent variable z onto a color where the value in the first,
second, and third latent dimension linearly corresponds to the amount of red, green, and blue in the
color. Figure 2a shows each data point colored using this RGB representation.

Figure 1 shows the time evolution of DSDs in a simulation of clouds from the ATEX meteorological
case at the base aerosol level. Looking at the spatial organization allows us to better understand the
role DSDs of different characteristics play. We note that even as early as 2 hours, well in advance
of the occurrence of large cohesive shafts of large droplets extending down to the surface (i.e.,
precipitation), small pockets of yellow-to-green DSD form, which later become associated more with
the precipitating regions, where rain seems to form a yellow-green-blue transition as the droplets get
bigger and start to fall to lower altitudes.

The emergence of precipitation regions is also clearly visible in the latent space, where the associated
filament structure only appears at later time steps, when mass starts moving along the path as
indicated in Figure 2a. By tracing the retrieved path in the latent space and relating it back to
associated distributions, we can get valuable insight about distribution transitions along the path of
precipitation. Specifically, for each point on the latent space path, we average the 1000 observed
DSDs whose encoded representations are closest, in a Euclidean sense, to the point of interest. The
obtained distribution evolution is shown in Figure 2b and characterized by a steady increase in droplet
size, again confirming the close association with rainfall.
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Figure 3: The relative occurrence of specific droplet size distributions per height level. Color is
normalized and represents latent space location as discussed in Section 3. Increasing levels of aerosols
delay the precipitation onset.

Finally, we can summarize the state of the simulation at each time step by looking at what proportion
of DSDs follow specific characteristics/colors. This allows us to pinpoint precipitation initiation to
the moment when the presence of DSDs in precipitating regions, associated with green and blue
colors, significantly increases at later simulation times. This analysis is similar to tracking distribution
across clusters over time, only for the case of continuous labels using a full spectrum of colors
instead. Figure 3 shows, for each altitude level of the model, the relative occurrence of specific
droplet size distributions at 2, 4, and 7 hours for each aerosol concentration. Information about the
horizontal position and vertical structure is discarded. Specifically, we sort the set of all DSDs in the
horizontal plane (for fixed aerosol, time step, and height) by hue. After normalization of saturation
and brightness, this leaves us with a smooth color transition from violet/pink to blue colors that show
proportionality while roughly following the transition from ambient DSDs with mainly small droplet
sizes to DSDs associated with precipitation.

The composition plots in Figure 3 enable the fast summary of the state of the simulation and allow for
insightful comparisons across different simulation conditions. For aerosol concentration in particular,
we note that an increase in aerosol concentration causes a delay in the onset of precipitation. At a base
aerosol level, green and blue DSDs appear in significant amounts only after roughly 4 hours. With
less aerosols, this happens 2 hours earlier and with more aerosols 3 hours later. Delayed onset is likely
a consequence of the higher number of smaller droplets that form with more aerosols, suppressing
rain formation. The above insights highlight the utility of our proposed visualization techniques in the
analysis of LES simulation data. In the future, we aim to extend this work with further visualization
tools that will enable new applications and give us the ability to answer a broader range of questions
relating to, for example, entrainment, mass transport, temperature, updraft, and horizontal winds.

4 Conclusion

In this study, we have introduced a novel approach to understanding and visualizing droplet size
distributions in simulations of warm clouds using Variational Autoencoders (VAEs). By encoding
droplet distributions into a compact latent space and representing them through color spectra, we gain
valuable insights into the organization and evolution of droplet sizes over time and across different
aerosol concentrations. Our findings reveal that while increased aerosol levels delay the onset
of precipitation, the evolution of droplet distributions follows a similar pattern. The visualization
techniques presented offer powerful tools for efficient and effective analysis of Large Eddy Simulation
(LES) data and permit a deeper understanding of cloud microphysics and its impact on weather and
climate predictions. Future work will explore additional visualizations to address a broader range of
questions related to cloud dynamics and processes.
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