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Abstract

We present KeyCLD, a framework to learn Lagrangian dynamics from images.
Learned keypoints represent semantic landmarks in images and can directly repre-
sent state dynamics. We show that interpreting this state as Cartesian coordinates,
coupled with explicit holonomic constraints, allows expressing the dynamics with a
constrained Lagrangian. KeyCLD is trained unsupervised end-to-end on sequences
of images. Our method explicitly models the mass matrix, potential energy and
the input matrix, thus allowing energy based control. We demonstrate learning of
Lagrangian dynamics from images on the dm_control pendulum, cartpole and
acrobot environments. KeyCLD can be learned on these systems, whether they are
unactuated, underactuated or fully actuated. Trained models are able to produce
long-term video predictions, showing that the dynamics are accurately learned. We
compare with Lag-VAE, Lag-caVAE and HGN, and investigate the benefit of the
Lagrangian prior and the constraint function. KeyCLD achieves the highest valid
prediction time on all benchmarks. Additionally, a very straightforward energy
shaping controller is successfully applied on the fully actuated systems.

1 Introduction and Related Work

Learning dynamical models from data is a crucial aspect while striving towards intelligent agents
interacting with the physical world. Understanding the dynamics and being able to predict future
states is paramount for controlling autonomous systems or robots interacting with their environment.
For many dynamical systems, the equations of motion can be derived from scalar functions such as
the Lagrangian or Hamiltonian. This strong physics prior enables more data-efficient learning and
holds energy conserving properties [1, 2, 3, 4]. Finzi et al. [5] introduced learning of Lagrangian or
Hamiltonian dynamics in Cartesian coordinates, with explicit constraints. Zhong et al. [6] included
external input forces and energy dissipation, and introduced energy-based control by leveraging the
learned energy models.

Learning dynamics from realistic images is a challenge per Lutter and Peters [7]. Most related
work [1, 8, 9, 10, 11] uses VAEs for latent space dynamics. Zhong and Leonard [12] uses interpretable
coordinates but requires full knowledge of the kinematic chain. Our approach uses convolutional
keypoint estimators for observing states from images. Objects can be represented with one or more
keypoints, fully capturing the position and orientation. Keypoints are used for object detection [13],
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Figure 1: KeyCLD learns Lagrangian dynamics from images. (a) An observation of a dynamical
system is processed by a keypoint estimator model. (b) The model represents the positions of the
keypoints with a set of spatial probability heatmaps. (c) Cartesian coordinates are extracted using
spatial softmax and used as state representations to learn Lagrangian dynamics. (d) The information
in the keypoint coordinates bottleneck suffices for a learned renderer model to reconstruct the
original observation, including background, reflections and shadows. The keypoint estimator model,
Lagrangian dynamics models and renderer model are jointly learned unsupervised on sequences of
images.

human pose estimation [14], control and robotic manipulation [15, 16], system identification and
dynamic modelling [17]. Jakab et al. [18] learn a keypoint representation unsupervised by using it as
an information bottleneck for reconstructing images.

Concretely, our work makes the following contributions. (1) We introduce KeyCLD, a framework
to learn constrained Lagrangian dynamics from images. We are the first to use learned keypoint
representations from images to learn Lagrangian dynamics. (2) We show how to control constrained
Lagrangian dynamics in Cartesian coordinates with energy shaping, where the state is estimated from
images. (3) KeyCLD is empirically validated on the pendulum, cartpole and acrobot systems from
dm_control [19]. We compare quantitatively with Lag-caVAE, Lag-VAE [12] and HGN [8], and
investigate the benefit of the Lagrangian prior and the constraint function. KeyCLD achieves the
highest valid prediction time on all benchmarks (see Table 1).

2 Constrained Lagrangian Dynamics

2.1 Lagrangian Dynamics

For a dynamical system with m degrees of freedom, a set of independent generalized coordinates
q ∈ Rm represents all possible kinematic configurations of the system. The time derivatives q̇ ∈ Rm

are the velocities of the system. If the system is fully deterministic, its dynamics can be described by
the equations of motion, a set of second order ordinary differential equations (ODEs):

q̈ = f(q(t), q̇(t), t,u(t)) (1)

where u(t) are the external forces acting on the system. From a known initial value (q, q̇), we can
integrate f through time to predict future states of the system. However, by expressing the dynamics
with a Lagrangian we introduce a strong physics prior [3]:

L(q, q̇) = T (q, q̇)− V (q) (2)

where V is the potential energy of the system and T is the kinetic energy:

T (q, q̇) =
1

2
q̇⊤M(q)q̇ (3)

where M(q) ∈ Rm×m is the positive semi-definite mass matrix. It is now possible to describe the
dynamics with two neural networks, one for the mass matrix and one for the potential energy. Since
both are only in function of q and not q̇, and expressing the mass matrix and potential energy is
more straightforward than expressing the equations of motion. It is generally more simple to learn
dynamics with this framework. In other words, adding more physics priors in the form of Lagrangian
mechanics, makes learning the dynamics more robust and data-efficient [2, 3, 4, 7].
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The Euler-Lagrange equations (4) allow transforming the Lagrangian into the equations of motion by
solving for q̈:

1

2
∇d

d
dt
∇q̇L −∇qL = ∇qW = g(q)u (4)

where W is the external work done on the system, e.g. forces applied for control. The input matrix
g ∈ Rm×l allows introducing external forces u ∈ Rl for modelling any control-affine system.

2.2 Cartesian coordinates

Finzi et al. [5] showed that expressing Lagrangian mechanics in Cartesian coordinates x ∈ Rk instead
of independent generalized coordinates q ∈ Rm has several advantages:

L(x, ẋ) = 1

2
ẋ⊤Mẋ− V (x) (5)

The mass matrix M no longer changes in function of the state, and is thus static. This means that
a neural network is no longer required to model the mass matrix, simply the values in the matrix
itself are optimized. Also the input matrix g(x) ∈ Rk×l is now in function of x. Because we
are now expressing the system in Cartesian coordinates we additionally need a set of n holonomic
constraint functions Φ(x) : Rk → Rn. These guarantee a valid configuration of the system, and a
correct number of degrees of freedom: m = k − n. Incorporating the constraint function leads to the
following equations of motion (see Appendix B for the full derivation):

f = −∇xV + gu

ẍ = M−1f −M−1DΦ⊤ [
DΦM−1DΦ⊤]−1 [

DΦM−1f + ⟨D2Φ, ẋ⟩ẋ
] (6)

with D being the Jacobian operator. Since time derivatives of functions modelled with neural networks
are no longer present, equation (6) can be easily implemented (see Appendix F for details).

3 Learning Lagrangian dynamics from images

Figure 2: Schematic overview of training KeyCLD. A sequence of n images {zi}, i ∈ {1, . . . , n}, is
processed by the keypoint estimator model, returning heatmaps {si} representing spatial probabilities
of the keypoints. si consists of m heatmaps sik, one for every keypoint xi

k, k ∈ {1, . . . ,m}. Spatial
softmax is used to extract the Cartesian coordinates of the keypoints, and all keypoints are concate-
nated in the state vector xi. xi is transformed back to a spatial representation s′i using Gaussian
blobs. This prior is encouraged on the keypoint estimator model by a binary cross-entropy loss Le

between si and s′i. The renderer model reconstructs images z′i based on s′i, with reconstruction
loss Lr. The dynamics loss Ld is calculated on the sequence of state vectors xi. Keypoint estimator
model, renderer model and the dynamics models (mass matrix, potential energy and input matrix) are
trained jointly with a weighted sum of the losses L = Lr + Le + λLd.
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We introduce the use of keypoints to learn Lagrangian dynamics from images. KeyCLD is trained
unsupervised on sequences of n images {zi}, i ∈ {1, . . . , n} and a constant input vector u (Fig. 2).
Appendix G offers a more detailed explanation of the keypoint estimator and renderer models.

The sequence {xi}, corresponding to the sequence of given images {zi}, and the constant input u
is used to calculate the dynamics loss. We use a central first order finite difference estimation, and
project the estimated velocity on the constraints, so that the constraints are not violated:

ẋi =
[
I −DΦ(xi)+DΦ(xi)

] xi+1 − xi−1

2h
, i ∈ {2, . . . , n− 1} (7)

where (·)+ signifies the Moore-Penrose pseudo-inverse and h the timestep. The equations of
motion (6) are solved starting from all initial values in parallel, for ν timesteps This maximizes
the learning signal obtained to learn the dynamics and leads to overlapping sequences of length ν:
{x̂i+1, . . . , x̂i+ν}, i ∈ {2, . . . , n− ν}. Thus, x̂i+j is obtained by integrating j timesteps forward in
time, starting from initial value xi, which was derived by the keypoint estimator model. All {x̂i+j}
in all sequences are compared with their corresponding keypoint states {xi+j} in an L2 loss:

Ld =

n−ν∑
i=2

ν∑
j=1

∥∥xi+j − x̂i+j
∥∥2 (8)

The total loss is the weighted sum of Lr, Le and Ld, with a weighing hyperparameter λ: L =
Lr + Le + λLd . To conclude, the keypoint estimator model, renderer model and dynamics models
(mass matrix, potential energy and input matrix) are jointly trained end-to-end on sequences of images
{zi} and constant inputs u with stochastic gradient descent.

4 Experiments

We adapted the pendulum, cartpole and acrobot environments from dm_control [19, 20] for our
experiments (see Appendix O). As a metric we use the valid prediction time (VPT) score [11, 21]
which measures how long the predicted images {z′i} stay close to the groundtruth images {zi}:

VPT = argmini[MSE(z′i, zi) > ϵ] (9)
We present evaluations with the following ablations and baselines. KeyCLD: the full framework as
described in Sections 2 and 3. KeyLD: The constraint function is omitted. KeyODE2: A second
order neural ODE modelling the acceleration is used instead of the Lagrangian prior. The keypoint
estimator and renderer model are identical to KeyCLD. Lag-caVAE: The model presented by Zhong
and Leonard [12]. We adapted the model to the higher resolution and color images. Lag-VAE: The
model presented by Zhong and Leonard [12]. We adapted the model to the higher resolution and
color images. HGN: Hamiltonian Generative Network presented by Toth et al. [8].

We generate predictions of 50 frames, given the first 3 frames of the ground truth sequences to
estimate the initial velocity according to equation (7). The VPT metric is calculated for the validation
set and averaged. See Table 1 for an overview of results.

5 Conclusion and Limitations

We introduce the use of keypoints to learn Lagrangian dynamics from images. Learned keypoint rep-
resentations derived from images are directly used as positional state vector for learning constrained
Lagrangian dynamics.

The main limitations of our work are that we only consider 2D systems, where the plane of the system
is parallel with the camera plane. Furthermore we do not model energy dissipation and the constraint
function is given.
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Table 1: Valid prediction time (higher is better, equation (9)) in number of predicted frames (mean
± std) for the different models evaluated on the 50 sequences in the validation set. Lag-caVAE and
Lag-VAE are only reported on the pendulum environment, since they are unable to model more than
one moving body without segmented images. HGN is only reported on non-actuated systems, since
it is incapable of modelling external forces and torques. KeyCLD achieves the best results on all
benchmarks.

# actuators KeyCLD KeyLD KeyODE2 Lag-caVAE Lag-VAE HGN

Pendulum 0 (Fig. 14) 43.1 ± 9.7 16.4 ± 11.3 19.1 ± 6.2 0.0 ± 0.0 10.8 ± 13.8 0.2 ± 1.4
1 (Fig. 15) 39.3 ± 9.8 14.9 ± 7.9 12.0 ± 4.1 0.0 ± 0.1 8.0 ± 10.2 -

Cartpole
0 (Fig. 16) 39.9 ± 7.4 29.8 ± 11.2 29.5 ± 9.5 - - 0.0 ± 0.0
1 (Fig. 17) 38.4 ± 8.7 28.0 ± 9.7 24.4 ± 7.9 - - -
2 (Fig. 18) 30.2 ± 10.7 23.9 ± 9.6 17.7 ± 8.2 - - -

Acrobot
0 (Fig. 19) 47.0 ± 6.0 40.0 ± 7.9 34.3 ± 9.5 - - 2.2 ± 6.9
1 (Fig. 20) 46.8 ± 4.6 29.5 ± 6.3 33.0 ± 7.4 - - -
2 (Fig. 21) 47.0 ± 3.5 39.1 ± 9.9 30.8 ± 9.3 - - -
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A Broader impact

A tenacious divide exists between control engineering researchers and computer science researchers
working on control. Where the first would use known equations of motion for a specific class of
systems and investigate system identification, the latter would strive for the most general method with
no prior knowledge. We believe this is a spectrum worth exploring, and as such use strong physics
priors as Lagrangian mechanics, but still model e.g. the input matrix and the potential energy with
arbitrary neural networks. The broad field of model-based reinforcement learning could benefit from
decades of theory and practice in classic control theory and system identification. We hope this paper
could help bridge both worlds.

Using images as input is, in a broad sense, very powerful. Since camera sensors are consistently
becoming cheaper and more powerful due to advancements in technology and scaling opportunities,
we can leverage these rich information sources for a deeper understanding of the world our intelligent
agents are acting in. Image sensors can replace and enhance multiple other sensor modalities, at a
lower cost.

To conclude, this work demonstrates the ability to efficiently model and control dynamical systems
that are captured by cameras, with no supervision and minimal prior knowledge. We want to stress
that we have shown it is possible to learn both the Lagrangian dynamics and state estimator model
from images in one end-to-end process. The complex interplay between both, often makes them the
most labour intensive parts in system identification. We believe this is a gateway step in achieving
reliable end-to-end learned control from pixels.

B Full derivation of the constrained Euler-Lagrange equations

The constrained Euler-Lagrange equations are expressed with a vector λ(t) ∈ Rn containing
Lagrange multipliers for the constraints [5, 22]:

d
dt
∇ẋL(x, ẋ)−∇xL(x, ẋ) = g(x)u(t) +DΦ(x)⊤λ(t) (10)

with D being the Jacobian operator. Because the mass matrix is static 1, this is simplified to:

Mẍ+∇xV (x) = g(x)u(t) +DΦ(x)⊤λ(t) (11)

ẍ = M−1f +M−1DΦ(x)⊤λ(t), f = −∇xV (x) + g(x)u(t) (12)
Calculating twice the time derivative of the constraint conditions yields:

0 ≡ Φ(x)

0 = Φ̇(x)

0 = DΦ(x)ẋ

0 = DΦ̇(x)ẋ+DΦ(x)ẍ

(13)

The Lagrange multipliers λ(t) are solved by substituting ẍ from equation (12) in equation (13):

−DΦ̇(x)ẋ = DΦ(x)M−1f +DΦ(x)M−1DΦ(x)⊤λ(t)

λ(t) =
[
DΦ(x)M−1DΦ(x)⊤

]−1
[
DΦ(x)M−1f +DΦ̇(x)ẋ

] (14)

We use the chain rule a second time to get rid of the time derivative of DΦ(x):

DΦ̇(x)ẋ = ⟨D2Φ, ẋ⟩ẋ (15)
Substituting λ(t) in (12) we finally arrive at:

f = −∇xV + gu

ẍ = M−1f −M−1DΦ⊤ [
DΦM−1DΦ⊤]−1 [

DΦM−1f + ⟨D2Φ, ẋ⟩ẋ
] (16)

Note that in equation (16) only the Jacobian of Φ(x) is present. This means that there is no need to
learn explicit constants in Φ(x), such as lengths or distances between points. Rather that constant
distances and lengths through time are enforced by DΦ(x)ẋ = 0. We use this property to our
advantage since this simplifies the learning process.

1In other words, the centrifugal and Coriolis forces are zero because Ṁ = 0 and ∇xM = 0.
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C Relationship between Lagrangian and Hamiltonian

Both Lagrangian and Hamiltonian mechanics ultimately express the dynamics in terms of kinetic and
potential energy. The Hamiltonian expresses the total energy of the system H(q,p) = T (q,p) +
V (q) [1, 8]. It is expressed in the position and the generalized momenta (q,p), instead of generalized
velocities. Using the Legendre transformation it is possible to transform L into H or back. We focus
in our work on Lagrangian mechanics because it is more general [4] and observing the momenta p is
impossible from images. See also Botev et al. [11] for a short discussion on the differences.

D Constraints as prior knowledge

The given constraint function Φ(x) adds extra prior information to our model. Alternatively, we
could use a mapping function x = F(q). This leads directly to an expression of the Lagrangian in
Cartesian coordinates using ẋ = DF(q)q̇:

L(q, q̇) = 1

2
q̇⊤DF(q)⊤MDF(q)q̇− V (F(q)) (17)

from which the equations of motion can be derived using the Euler-Lagrange equations, similar
to equation (6). In terms of explicit knowledge about the system, the mapping x = F(q) is
equivalent to the kinematic chain as required for the method of Zhong and Leonard [12]. Using
the constraint function is however more general. Some systems, such as systems with closed
loop kinematics, can not be expressed in generalized coordinates q, and thus have no mapping
function [23]. Furthermore, learning the constraint manifold 0 = Φ(x) from data with geometric
manifold learning algorithms [24, 25] could be a future research direction. We therefore argue that
adopting the constraint function Φ(x) is more general and requires less explicit knowledge injected
in the model.

E Rigid bodies as rigid sets of point masses

By interpreting a set of keypoints as a set of point masses, we can represent any rigid body and
its corresponding kinetic and potential energy. Additional constraints are added for the pairwise
distances between keypoints representing a single rigid body [5]. For 3D systems, at least four
keypoints are required to represent any rigid body [26]. We focus in our work on 2D systems in a
plane parallel to the camera plane. 2D rigid bodies can be expressed with a set of 2 point masses,
which can further be reduced depending on the constraints and connections between bodies (see
Appendix H for more detail and proof). In our framework, the keypoint model is free to choose the
relative placement of keypoints on the different moving parts of the dynamic system, enabling the
choice of distinct landmarks that also express the state accurately, e.g. the endpoint of a beam.

The interpretation of rigid bodies as sets of point masses allows expressing the kinetic energy as the
sum of the kinetic energies of the point masses. Corresponding to equation (3), the mass matrix for a
2D system is defined as a diagonal matrix with masses mk for every keypoint xk:

T (ẋ) =
1

2
ẋ⊤Mẋ =

1

2
[ẋ1 . . . ẋn]


m1 0 . . . 0 0
0 m1 . . . 0 0
...

...
. . .

...
...

0 0 . . . mn 0
0 0 . . . 0 mn


ẋ1

...
ẋn

 (18)

To enforce positive values, the masses are parameterized by their square root and squared.
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F Implementation of constrained Euler-Lagrange equations in JAX

It could seem a daunting task to implement the derivation of the constrained Euler-Lagrange equations
(6) in an autograd library. As an example, we provide an implementation in JAX [27].

import jax
import jax.numpy as jnp

def constraint_fn(x):
# function that returns a vector with constraint values
c = jnp.array([
...,

])
return c

def mass_matrix(params, x):
# function that returns the mass matrix
...
return m

def potential_energy(params, x):
# function that returns the potential energy
...
return V

def input_matrix(params, x):
# function that returns the input matrix
...
return g

def euler_lagrange(params, x, x_t, action):
m_inv = jnp.linalg.pinv(mass_matrix(params, x))
f = - jax.grad(potential_energy, 1)(params, x) + input_matrix(params, x) @ action

Dphi = jax.jacobian(constraint_fn)(x)
DDphi = jax.jacobian(jax.jacobian(constraint_fn))(x)

# Lagrange multiplicators:
l = jnp.linalg.pinv(Dphi @ m_inv @ Dphi.T) @ (Dphi @ m_inv @ f + DDphi @ x_t @ x_t)
x_tt = m_inv @ (f - Dphi.T @ l)

return x_tt

G Keypoint estimation and renderer model

All images zi in the sequence are processed by the keypoint estimator model, returning each a
set of heatmaps si representing the spatial probabilities of keypoint positions. si consists of m
heatmaps sik, one for every keypoint xi

k, k ∈ {1, . . . ,m}. The keypoint estimator model is a fully
convolutional neural network, maintaining a spatial representation from input to output (see Fig. 3 for
the detailed architecture). This contrasts with a model ending in fully connected layers regressing to
the coordinates directly, where the spatial representation is lost [8, 12]. Because a fully convolutional
model is equivariant to translation, it can better generalize to unseen states that are translations of
seen states. Another advantage is the possibility of augmenting z with random transformations of the
D4 dihedral group to increase robustness and data efficiency. Because s can be transformed back
with the inverse transformation, this augmentation is confined to the keypoint estimator model and
has no effect on the dynamics.

To distill keypoint coordinates from the heatmaps, we define a Cartesian coordinate system in the
image (see for example Fig. 1). Based on this definition, every pixel p corresponds to a point xp in
the Cartesian space. The choice of the Cartesian coordinate system is arbitrary but is equal to the
space of the dynamics ẍ(ẋ,x, t,u) and the constraint function Φ(x) (see Section 2). We use spatial
softmax over all pixels p ∈ P to distill the coordinates of keypoint xk from its probability heatmap:

xk =

∑
p∈P xpe

sk(p)∑
p∈P esk(p)

(19)
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Figure 3: Visualization of the keypoint estimator (top) and renderer (bottom) model architectures.
The keypoint estimator model and renderer model have similar architectures, utilizing down- and
upsampling and skip connections which help increasing the receptive field [28, 29]. The renderer
model learns a constant feature tensor that is concatenated with the input s′. The feature tensor
provides positional information since the fully-convolutional model is translation equivariant.

Spatial softmax is differentiable, and the loss will backpropagate through the whole heatmap since
xk depends on all the pixels. Cartesian coordinates xk of the different keypoints are concatenated in
vector x which serves as the state representation of the system. This compelling connection between
image keypoints and Cartesian coordinates forms the basis of this work. The keypoint estimator
model serves directly as state estimator to learn constrained Lagrangian dynamics from images.

Similar to Jakab et al. [18], x acts as an information bottleneck, through which only the Cartesian
coordinates of the keypoints flow to reconstruct the image with the renderer model. First, all xk are
transformed back to spatial representations s′k using unnormalized Gaussian blobs, parameterized by
a hyperparameter σ.

s′k = exp

(
−∥xp − xk∥2

2σ2

)
(20)

A binary cross-entropy loss Le is formulated over s and s′ to encourage this Gaussian prior. The
renderer model can more easily interpret the state in this spatial representation, as it lies closer to
its semantic meaning of keypoints as semantic landmarks in the reconstructed image. The renderer
model learns a constant feature tensor (inspired by Nguyen-Phuoc et al. [30]), which provides it with
positional information. Since the model itself is translation equivariant, it needs positional information
to reconstruct background information or specific appearances that depend on the positions of objects.
See Fig. 3 for the detailed architecture.

Finally, a reconstruction loss is formulated over the reconstructed images z′i and original images zi:

Lr =

n∑
i=1

∥z′i − zi∥2 (21)
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H Rigid bodies as sets of point masses

Figure 4: Any 2D rigid body with mass m and rotational inertia I is equivalent to a set of two point
masses x1 and x2 with masses m1 and m2. The kinetic energy of the rigid body, expressed in a
translational part and a rotational part, is equal to the sum of the kinetic energies of the point masses.

The position of a rigid body in 2D is fully described by the position of its center of mass xc and
orientation θ. Potential energy only depends on the position, thus if we want to describe the potential
energy with an equivalent rigid set of point masses, two points are sufficient to fully determine xc

and θ. For the kinetic energy, we provide the following Theorem and proof:
Theorem 1. For any 2D rigid body, described by its center of mass c, mass m and rotational inertia
I , there exists an equivalent rigid set of two point masses x1 and x2 with masses m1 and m2.

Proof. To find conditions such that the kinetic energy expressed in two point masses should be equal
to the rigid body representation, we start by expressing general 3D-movement:

xi = xc + xi/c , i ∈ {1, 2} (22)

Where the vector xc are the coordinates of the center of mass and the vector xi/c is the position of
the point mass relative to the center of mass. Since this relative position xi/c has fixed length, only a
rotation is possible and hence the equation of the velocity is:

ẋi = ẋc + ω × xi/c , i ∈ {1, 2} (23)

where ω is the rotational velocity of the body. Substituting this in the kinetic energy of the point
masses, we get:

T =
1

2

2∑
i=1

mi∥ẋc + ω × xi/c∥2

=
1

2

2∑
i=1

mi

(
∥ẋc∥2 + ∥ω × xi/c∥2 + 2xi/c ·

(
ẋc × ω

)) (24)

Where we calculated the square and used the circular shift property of the triple product on the last
term.

For movement in the 2D-plane (i.e. ω = e⃗zωz and xi = e⃗xxi,x + e⃗yxi,y), this becomes:

T =
1

2

2∑
i=1

mi

(
∥ẋc∥2 + ∥xi/c∥2ω2

z + 2xi/c ·
(
ẋc × ω

))
=

1

2

(
m1 +m2

)
∥ẋc∥2 +

1

2

(
m1∥x1/c∥2 +m2∥x2/c∥2

)
ω2
z +

(
m1x1/c +m2x2/c

)
·
(
ẋc × ω

)
(25)
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Matching the kinetic energy of the 2 point masses (equation (25)) with that of the rigid body
representation (left hand side of Fig. 4), we get following conditions:

m = m1 +m2

I = m1∥x1/c∥2 +m2∥x2/c∥2
0 = m1x1/c +m2x2/c

(26)

Since the last equation is a vector equation, this gives us four equations in six unknowns
(m1,m2,x1,x,x1,y ,x2,x,x2,y), which leaves us the freedom to choose two.

It follows from the third condition of (26) that points x1, x2 and xc should be collinear. To conclude,
we can freely choose the positions of the point masses (as long as xc is on the line between them),
and will be able to model the rigid body as a set of two point masses. In practice, KeyCLD will freely
choose the keypoint positions to be able to model the dynamics. Depending on the constraints in
the system, it is possible to further reduce the number of necessary keypoints. See Appendix O for
examples.

I Energy shaping control

A major argument in favor of expressing dynamics in terms of a mass matrix and potential energy is
the straightforward control design via passivity based control and energy shaping [31].

Recent works of Zhong et al. [6, 12] use energy shaping in generalized coordinates. In Cartesian
coordinates, energy shaping can still be used. This is easily seen from the fact that for the holonomic
constraints Φ(x) ≡ 0, we have the derivative DΦ(x)ẋ = 0, which means that the constraint forces
in equation (6) are perpendicular to the path and hence do no work nor influence the energy [22].

Energy shaping control makes sure that the controlled system behaves according to a potential energy
Vd(x) instead of V (x):

u = (g⊤g)−1g⊤ (∇xV −∇xVd)− ypassive (27)

where ypassive can be any passive output, the easiest choice being ypassive = kdg
⊤ẋ, where kd is a

tuneable control parameter. The proposed potential energy Vd should be such that:

x∗ = argminVd(x)

0 = g⊥ (∇xV −∇xVd)
(28)

Where g⊥ is the left-annihilator of g, meaning that g⊥g = 0. For fully actuated systems, the first
condition of equation (28) is always met and the easiest choice is:

Vd(x) = (x− x∗)⊤kp(x− x∗) (29)

where kp is a tuneable control parameter. The desired equilibrium position x∗ is obtained by
processing an image of the desired position with the keypoint estimator model. Finally, the passivity-
based controller that is used is:

u = (g⊤g)−1g⊤ [∇xV − kp(x− x∗)]− kdg
⊤ẋ (30)

Changing the behavior of the kinetic energy is also possible [32], but is left for future work. Many
model-based reinforcement learning algorithms require the learning of a full neural network as
controller. Whilst in this work, due to knowledge of the potential energy, we only need to tune two
parameters kp and kd.

Fig. 5 shows results of successful swing-up of the pendulum, cartpole and acrobot system. The same
control parameters kp = 5.0 and kd = 2.0 are used for all systems, demonstrating the generality of
the control method.
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Figure 5: KeyCLD allows using energy shaping control because the learned potential energy model
is available. Based on a swing-up target image z∗, the target state x∗ is determined by the keypoint
detector model. The sequences show that all three systems can achieve the target state. The control
parameters kp = 5.0 and kd = 2.0 are the same for all systems, demonstrating the generality of the
control method.

J Learned potential energy models

Since the potential energy V is explicitly modelled, we can plot values throughout sequences of
the state space. A sequence of images is processed by the learned keypoint estimator model, and
the states are then used to calculate the potential energy with the learned potential energy model.
Absolute values of the potential energy are irrelevant, since the potential is relative, but we gain
insights by moving parts of the system separately. See Fig. 6 for results for the pendulum, Fig. 7 and
8 for the cartpole and Fig. 9 and 10 for the acrobot.

−1.5

−1.0

−0.5

0.0

0.5
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0.0 0.2 0.4 0.6 0.8 1.0

time

Figure 6: Potential energy of the trained KeyCLD model of the pendulum environment. The pendulum
makes a full rotation. As expected, the potential energy follows a smooth sinusoidal path throughout
this sequence. The maximum value is reached when the pendulum is upright, and the minimum value
is reached when the pendulum is down.
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Figure 7: Potential energy of the trained KeyCLD model of the cartpole environment. The position
of the cart is fixed, and the pole makes a full rotation. As expected, the potential energy follows a
smooth sinusoidal path throughout this sequence.
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Figure 8: Potential energy of the trained KeyCLD model of the cartpole environment. The pole
is fixed and the cart moves from left to right. As expected, the change in potential energy in this
sequence is very low (compare to Fig. 7 with the same axis). A horizontal movement has no impact
on the gravity potential.
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Figure 9: Potential energy of the trained KeyCLD model of the acrobot environment. The first link
makes a full rotation, the second link is fixed relative to the first link. As expected, the potential
energy follows a smooth sinusoidal path throughout this sequence.

0

1

2

V

0.0 0.2 0.4 0.6 0.8 1.0

time

Figure 10: Potential energy of the trained KeyCLD model of the acrobot environment. The first
link is fixed and the second link makes a full rotation. Again, the potential energy follows a smooth
sinusoidal path throughout this sequence. Please compare with Fig. 9, where both links are moving.
Here the potential energy changes less, because the first link is not moving.
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K Learned input matrix models

Learning the input matrix g(x) is crucial for learning dynamics models with external inputs u.
We can visualize the vector basis that is represented by the input matrix, by drawing the vectors
originating on their respective keypoints. See Fig. 11, 12 and 13 for the input matrices that are
learned with our model. Each input corresponds to a vector base, visualized in different colors. The
vectors multiplied by their respective input, can be interpreted as forces acting on the keypoints.
These qualitative results allow further insight in our method.

Figure 11: Visualization of the input matrix of the trained KeyCLD model of the pendulum environ-
ment. The input of this environment is a torque acting on the pendulum. In the KeyCLD framework
this is correctly modelled with a force acting perpendicular on the pendulum.

Figure 12: Visualization of the input matrix of the trained KeyCLD model of the cartpole environment.
This environment has two inputs, a horizontal force acting on the cart, and a torque acting on the pole.
The horizontal force corresponds to the green vectors. The first vector acting on the cart keypoint
stays constant, and the second vector is negligibly small, since the horizontal force does not act on
the pole. The torque corresponds to the red vectors, it is modelled with forces acting on the pole in
opposite directions, such that the residual force can be zero.

Figure 13: Visualization of the input matrix of the trained KeyCLD model of the acrobot environment.
This environment has two inputs, two torques acting on each pole. The torques are modelled with
opposite forces on each end of the poles, such that the residual force can be zero.
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L Qualitative results

One sequence of each experiment is visualized in the paper. Please compare these qualitative results
for the unactuated and actuated pendulum environment (Fig. 14, 15), unactuated, underactuated
and fully actuated cartpole environment (Fig. 16, 17, 18) and unactuated, underactuated and fully
actuated acrobot environment (Fig. 19, 20, 21). Every third frame of the sequence is shown.

Ground truth

KeyCLD

KeyLD

KeyODE2

Lag-caVAE

Lag-VAE

HGN

Figure 14: Future frame predictions of the unactuated pendulum. These correspond to the first row
in Table 1. 50 frames are predicted based on the first three frames of the ground truth sequence to
estimate the velocity. Every third frame of every sequence is shown. KeyCLD is capable of making
accurate long-term predictions with minimal drift of the dynamics. Without constraint function,
KeyLD is not capable of making long-term predictions. Similarly, KeyODE2 is unable of making
long-term predictions. Lag-caVAE is fundamentally incapable of modelling data with background
information, since the reconstructed images are explicitly rotated. Lag-VAE does not succeed in
modelling moving parts in the data, and simply learns to predict static images. HGN also does not
capture the dynamics and only learns the background.

Ground truth

KeyCLD

KeyLD

KeyODE2

Lag-caVAE

Lag-VAE

Figure 15: Actuated pendulum.

Ground truth

KeyCLD

KeyLD

KeyODE2

HGN

Figure 16: Unactuated cartpole.
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Ground truth

KeyCLD

KeyLD

KeyODE2

Figure 17: Underactuated cartpole.

Ground truth

KeyCLD

KeyLD

KeyODE2

Figure 18: Fully actuated cartpole.

Ground truth

KeyCLD

KeyLD

KeyODE2

HGN

Figure 19: Unactuated acrobot.

Ground truth

KeyCLD

KeyLD

KeyODE2

Figure 20: Underactuated acrobot.

Ground truth

KeyCLD

KeyLD

KeyODE2

Figure 21: Fully actuated acrobot.
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M Failure cases

A possible failure case is that the model learns a faulty keypoint representation that does not
correspond to the given constraint function. This results in a failed model, and the training is
stuck in this local minima. The encoder model will keep focussing on this erronous representation
and is unable to switch to the correct keypoints. Figure 22 shows an example of this failure case. We
observed this failure in a minority of the experiments. This can be mitigated by retraining the model.

Ground truth

Keypoints

Gaussians

Reconstr.

Figure 22: Failure case of KeyCLD on the cartpole environment. Keypoints are indicated in green
and purple. The model erronously assigned the green keypoint to the pole. Since the given constraint
function dictates that the green keypoint can only move horizontally, this results in faulty model.

N Ablating Le

A binary cross-entropy loss Le is formulated over s and s′ to encourage the Gaussian prior. When Le

is omitted, the model can get stuck in a local minima where the encoder does not learn to predict
keypoints, but rather larger regions or static values. Image 23 shows an example of this failure case.

Ground truth

Keypoints

Gaussians

Reconstr.

Figure 23: Omitting Le can result in poor learning of keypoints. The encoder model does not predict
distinct keypoints, but other shapes. This is effectly a local minima in the learning process, since the
model is uncapable of switching to a correct representation.

O Details about the dm_control environments and data generation

We adapted the pendulum, cartpole and acrobot environments from dm_control [19] implemented
in MuJoCo [20]. Both are released under the Apache-2.0 license. Following changes were made to
the environments to adapt them to our use-case:

Pendulum The camera was repositioned so that it is in a parallel plane to the system. Friction was
removed. Torque limits of the motor are increased.

Cartpole The camera was moved further away from the system to enable a wider view, the two
rails are made longer and the floor lowered so that they are not cut-off with the wider view. All
friction is removed. The pole is made twice as thick, the color of the cart is changed. Torque limits
are increased and actuation is added to the cart to make full actuation possible.
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Acrobot The camera and system are moved a little bit upwards. The two poles are made twice as
thick, and one is changed in color. Torque limits are increased and actuation is added to the upper
part to make full actuation possible.

Data generation For every environment, 500 runs of 50 timesteps are generated with a 10%
validation split. The initial state for every sequence is at a random position with small random
velocity. The control inputs u are constant throughout a sequence, and uniform randomly chosen
between the force and torque limits of the input. We set u = 0 for 20% of the sequences. We found
this helps the model to learn the dynamics better, discouraging confusion of the energy models with
external actions.

Figure 24: From left to right the pendulum, cartpole and acrobot dm_control environments. The
respective constraint functions are given below each schematic.

Constraint functions The constraint function for each of the environments are given in Fig. 24. As
explained in Appendix H, every rigid body needs to be represented by two keypoints. But due to the
constraints it is possible to omit certain keypoints, because they do not move or coincide with other
keypoints. As experimentally validated, we can thus model all three systems with a lower number of
keypoints, where the number of keypoints equals the number of bodies.

Pendulum One keypoint is used to model the pendulum. The second keypoint of this rigid body
can be omitted because it can be assumed to be at the origin. Due to the constraint function, this point
will provide no kinetic energy since it will not move. Since the other keypoints position and mass is
freely chosen, any pendulum can be modelled. The constraint function expresses that the distance l1
from the origin to x1 is fixed. The value of l1 in the implementation is irrelevant because it vanishes
when taking the Jacobian.

Cartpole Two keypoints are used to model the cartpole. The constraint function expresses that x1

does not move in the vertical direction and the distance l1 between x1 and x2 is constant. Again, the
values of l1 and l2 in the implementation are irrelevant.

Acrobot Two keypoints are used to model the acrobot. The constraint function expresses that
lengths l1 and l2 are constant through time. Again, the values are irrelevant in the implementation.

P Training hyperparameters and details

All models were trained on one NVIDIA RTX 2080 Ti GPU.

KeyCLD, KeyLD and KeyODE2 We use the Adam optimizer [33], implemented in Optax [34]
with a learning rate of 3× 10−4. We use the exact same hyperparameters for all the environments
and did not tune them individually. Dynamics loss weight λ = 1, σ = 0.1 for the Gaussian blobs in
s′. The hidden layers in the keypoint estimator and renderer model have at the first block 32 features,
this increases to respectively 64 and 128 after every maxpool operation. All convolutions have kernel
size 3× 3, and maxpool operations scale down with factor 2 with a kernel size of 2× 2. See Tables 4
and 5 for the number of parameters.
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The potential energy is modelled with an MLP with two hidden layers with 32 neurons and celu
activation functions [35]. The weights are initialized with a normal distribution with standard
deviation 0.01. See Table 2 for the number of parameters. Likewise, the input matrix is modelled
with an MLP similar to the potential energy. The outputs of this MLP are reshaped in the shape of
the input matrix. See Table 3 for the number of parameters.

The KeyODE2 dynamics model is an MLP with three hidden layers with each 64 neurons. We chose a
higher number of layers and neurons, to allow this model more expressivity compared to the potential
energy and input matrix models of KeyCLD.

Table 2: Number of parameters of the potential energy model
Pendulum Cartpole Acrobot

Dense_0 96 160 160
Dense_1 1056 1056 1056
Dense_2 33 33 33

Total 1185 1249 1249

Table 3: Number of parameters of the input matrix model
Pendulum Cartpole Acrobot

Dense_0 96 160 160
Dense_1 1056 1056 1056
Dense_2 66 264 264

Total 1218 1480 1480

Table 4: Number of parameters of the keypoint encoder model
Pendulum Cartpole Acrobot

Block_0/Conv_0 896 896 896
Block_0/GroupNorm_0 64 64 64
Block_1/Conv_0 18496 18496 18496
Block_1/GroupNorm_0 128 128 128
Block_2/Conv_0 73856 73856 73856
Block_2/GroupNorm_0 256 256 256
Block_3/Conv_0 110656 110656 110656
Block_3/GroupNorm_0 128 128 128
Block_4/Conv_0 27680 27680 27680
Block_4/GroupNorm_0 64 64 64
Conv_0 289 578 578

Total 232513 232802 232802

Lag-caVAE, Lag-VAE and HGN For the Lag-caVAE and Lag-VAE baselines, the official public
codebase was used [12]. We adapted the implementation to work with the higher input resolution of
64 by 64 (instead of 32 by 32), and 3 color channels (instead of 1).

For the HGN baseline, we used the implementation that was also released by Zhong and Leonard
[12]. The architecture was adapted to work with the higher input resolution of 64 by 64 (instead
of 32 by 32) by adding an extra upscale layer in the decoder, and a maxpool layer and one extra
convolutional layer in the encoder.
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Table 5: Number of parameters of the renderer model
Pendulum Cartpole Acrobot

Seed Tensor 126976 126976 122880
Block_0/Conv_0 9248 9248 9248
Block_0/GroupNorm_0 64 64 64
Block_1/Conv_0 18496 18496 18496
Block_1/GroupNorm_0 128 128 128
Block_2/Conv_0 73856 73856 73856
Block_2/GroupNorm_0 256 256 256
Block_3/Conv_0 110656 110656 110656
Block_3/GroupNorm_0 128 128 128
Block_4/Conv_0 27680 27680 27680
Block_4/GroupNorm_0 64 64 64
Conv_0 867 867 867

Total 368419 364323 364323
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