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Abstract

Upcoming emission line spectroscopic surveys, such as Euclid and the Roman
Space Telescope, will be prone to systematics due to the presence of interlopers:
galaxies whose redshift and distance from us are miscalculated due to line confusion
in their emission spectra. Particularly pernicious are interlopers involving the
confusion between two lines with close emitted wavelengths, since these interlopers
correlate with the target galaxies. An interesting example is Hβ emitters confused
as [O III] emitters. They introduce a particular pattern in the 3D distribution of the
observed galaxy catalog that can bias the cosmological analysis performed with
that sample. We present a novel method to predict the fraction of interlopers in a
galaxy catalog, using simulations and halos as a proxy for galaxies. This method
uses Graph Neural Networks to learn the posterior distribution of the interloper
fraction while marginalizing over cosmological and astrophysics unknowns.

1 Introduction

Slitless spectroscopy used in upcoming galaxy surveys, such as Euclid and Roman, will provide
emission line galaxy spectra with low signal-to-noise ratio, but will allow us to observe an unprece-
dented number of galaxies out to redshift z = 3. Measurements of the galaxy redshifts will be
performed using one or two lines in each spectrum, making these surveys prone to contain interlopers.
Interlopers are galaxies whose redshift has been miscalculated due to line confusion, which leads to
a wrong prediction for their distance from us. The confusion happens because an emission line is
wrongly assumed to be the target line: Hα in Euclid and Roman up to z = 1.8, and [O III] in Roman
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at redshifts z = 1.8− 3. We consider a particular type of interlopers, those that correlate with the
target sample because the two confused lines have similar emitted wavelengths, and thus the distance
between the true and wrongly inferred position of the interloper is small and interlopers live in the vol-
ume of the survey. In particular, we consider Hβ emitters that are confused as [O III] emitters. Their
distance is underestimated by about 97h−1Mpc at z = 1 and 85h−1Mpc at z = 2. This systematic
shift of a subsample of objects introduces a particular anisotropic pattern in the 3D distribution of the
observed galaxies that can bias the analysis performed with that data sample [Massara et al., 2021].
In this work we train Graph Neural Networks (GNNs) [Battaglia et al., 2018] to infer the unknow
fraction of Hβ-[O III] interlopers in a catalog using a likelihood-free field-level method.

2 Data Set

We use halos (clumps of dark matter) as a proxy for galaxies to test our method. Indeed, both types of
objects trace the 3D distribution of the matter field with bias schemes that can be tuned. Moreover, to
demonstrate the method, we do not need to build galaxy catalogs with emission line distributions that
have realistic fractions of interlopers in them. We instead need to generate a sufficiently large data set
with enough variation in the objects’ bias, the underlying cosmology, and the fraction of interlopers,
so that the training set can be used to train a flexible enough model that can predict the fraction of
interlopers effectively marginalizing over the other unknowns1. We build our data set from the halo
catalogs of a subset of the Quijote simulations [Villaescusa-Navarro et al., 2020a]:

SET1: 100 simulations at the so-called fiducial cosmology, a flat ΛCDM cosmology with matter
density parameter Ωm = 0.3175, baryon density parameter Ωb = 0.049, dimensionless Hubble
constant h = 0.6711, spectral index ns = 0.9624, linear matter fluctuation amplitude σ8 = 0.834,
and sum of neutrino masses Mν = 0 eV.

SET2: 155 simulations selected among 2,000 simulations whose cosmological parameters are
arranged in a Latin Hypercube (LH) configuration. The selected boxes have parameters Ωm ∈
[0.18− 0.42], Ωb ∈ [0.038− 0.062], h ∈ [0.58− 0.82], ns ∈ [0.88− 1.12], σ8 ∈ [0.68− 0.92].

All the simulation boxes cover a volume equal to 1h−3Gpc3, and they contain 5123 dark matter
particles from which halos have been identified using the Friends-of-Friends (FoF) algorithm. Due
to constraints from the memory of the GPUs, we crop each box along the x̂ and ŷ directions to
obtain multiple sub-boxes with fewer halos. The ẑ axis is assumed to be the line-of-sight direction,
along which we apply redshift space distortions (halos are displayed depending on their velocity) and
shift by 97h−1Mpc randomly selected objects to mimic interlopers. The fraction of such objects is
uniformly sampled within fi ∈ [0.0− 0.2] and varied among different sub-boxes. Then, from the
halos in each sub-box we build a graph, where halos are the nodes that are connected via edges if
their distance is smaller than the linking radius rlink, which is a hyperparameter that we tune. We add
attributes that respect the symmetry of the problem2 by describing the spatial distribution of halos via
edge attributes only [Villanueva-Domingo et al., 2022]:

eij =

[
r∥ =

dij · ẑ
rlink

, r⊥ =
|dij × ẑ|
rlink

, cos θ =
vi⊥ · vj⊥

|vi⊥||vj⊥|

]
(1)

where vi is the vector connecting the centroid of the catalog and the node i, dij = vi − vj is the
vector connecting the two nodes i and j at the beginning and end of the edge eij , and v⊥ = v × ẑ
is the component of v perpendicular to the line-of-sight. Moreover, we introduce global attributes
describing the whole graph in some cases. Once the graphs are built, we divide the data into training,
validation, and test sets with an 80/10/10 split ratio.

1However, realistic galaxy catalogs that include survey geometry and observational systematics will be
needed to train such types of GNN models before using them on real data.

2The Universe is invariant under translations and rotations, however we observe redshifts rather than distances.
The galaxy redshift is not only determined by the Hubble flow, hence its distance to us, but also by the peculiar
velocity of the galaxy along the line-of-sight ẑ, causing an observed anisotropic distortion. Moreover, when
converting redshift and angles into distances, a fiducial cosmology needs to be assumed. If that is different
from the cosmology of the Universe (or of the simulation box considered), additional anisotropic distortions are
introduced in the dataset. The observed Universe thus exhibits a cylindrical symmetry and we implement it in
the attributes of the edges in our graphs.

2



3 Graph Neural Network

We build GNNs to determine the fraction of interlopers in a catalog via likelihood-free inference.
The GNN architecture is composed of GNN blocks that take as input a graph and output the same
graph with updated node, edge, and global attributes via message passing. Thus, even if the initial
graph does not contain node attributes, the GNN blocks will assign and update them. Each block l is
composed of the following elements:
The edge model that updates each input edge attribute e

(l−1)
ij to the output e(l)ij ,

e
(l)
ij = ϕl

([
n
(l−1)
i ,n

(l−1)
j , e

(l−1)
ij

])
, (2)

and the node model that updates the node attributes,

n
(l)
i = ψl

n(l−1)
i ,

⊕
j∈Ni

e
(l)
ij ,u

 , (3)

where ϕ and ψ are MLPs, u is the global attribute (when specified), and
⊕

= [max, mean,
∑

]
is a permutation invariant aggregation operator applied to all edges eij with j ∈ Ni and Ni being
the indexes of the nodes connected to node ni. The number of GNN blocks, Nblock, determines the
number of times the message passing operation is performed and the attributes are updated. After the
GNN blocks, an additional aggregation operation compresses the information of each graph, then it is
concatenated to the global feature u, when present, and passed to a final MLP τ to obtain the output
vector y. All MLPs are built using two fully connected layers with the ReLU activation function. The
number of GNN blocks and neurons per fully connected layer are hyperparameters that we optimize.

We train the GNNs to output the vector y(G) = [µ(G), σ(G)] with

µ(G) =
∫
dfi p(fi|G)fi , σ(G) =

[∫
dfi p(fi|G)(fi − µ)2

]1/2
(4)

being the mean and standard deviation of the marginalized posterior distribution p(fi|G),

p(fi|G) =
∫
dθ1...dθn p(fi, θ1, ..., θn|G) (5)

where θ1, ..., θn are cosmological and/or astrophysical parameters. In order to train such a model, we
implement the loss function [Jeffrey and Wandelt, 2020, Villaescusa-Navarro et al., 2022]

L = log

 ∑
j∈batch

(fi,j − µj)
2

+ log

 ∑
j∈batch

[
(fi,j − µj)

2 − σ2
j

]2 (6)

whose minimization has been shown to be equivalent to solving for the mean and standard deviation
of the posterior distribution [see Villaescusa-Navarro et al., 2020b]. We minimize the loss function
using the ADAM optimizer [Kingma and Ba, 2017], with values for the learning rate and weight
decay that we treat as hyperparameters to be optimized. The optimization of all hyperparameters
(learning rate lr, weigh decay wd, number of GNN blocks Nblock, number of neurons Nhid in MLPs,
and linking radius rlink) is performed using the OPTUNA package [Akiba et al., 2019] with at least
100 trials, each of those consisting in the training of a model with a specific choice for the value of
hyperparameters. We select the GNN model with hyperparameters that give the best validation loss
after training.

We quantify the performance of the GNN using various metrics applied to the test sets. We consider:
The root mean square error RMSE =

√
< (µ− fi)2 > with < ... > indicating the mean among

the test set, which quantifies the precision of the model—the lower the RMSE, the more precise
the model is; The coefficient of determination R2 = 1− < (µ − fi)

2 > / < (fi− < fi >)
2 >

that measures the accuracy of the model (the closer it is to 1, the more accurate the model is); An
estimation for the bias, b =< µ− fi >; The χ2 =< [(µ− fi)/σ]

2
> that indicates if the standard

deviations of the posterior distributions are well determined by the model (happening when χ2 ∼ 1).
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Figure 1: Likelihood-free inference of interloper fraction in the test sets. Left to right: fixed cosmology
and halo bias, fixed cosmology and varied bias, varied cosmology and bias, latter with global feature.

4 Results

Fixed cosmology and halo bias We consider the case where all catalogs share the same cosmology
and halo bias, and are built using SET1. In this case, the posterior distribution of the fraction of
interlopers p(fi|G) in equation 5 is not marginalized over any other parameter. From each simulation
we crop sub-boxes of size 150×150×1000 (h−1Mpc)3 along the x̂, ŷ, and ẑ directions, respectively.
As a result, these sub-boxes contain about 4,500 objects. Depending on the sub-box, a different
fraction of halos are selected to represent interlopers.

After training more than 100 models via an OPTUNA study, we identify the model with the best
validation loss having hyperparameters Nblock = 1, Nhid = 35, lr = 3.8× 10−4, wd = 10−2 and
rlink = 11.68h−1Mpc. The single GNN block and the low value for rlink indicate that the GNN is
using small-scale clustering properties to determine the fraction of interlopers. As expected, there
is lot of information on small scales, since the number of pairs and their spatial distribution change
depending on the number of interlopers in the catalog and graph. The left panel of Figure 1 shows
the inference performed on the test sets, with the x-axis indicating the true value fi, and the y-axis
denoting the prediction of the model. The black line shows the values y = x, points denote the
predicted mean, and error bars denote the predicted standard deviation in each test catalog. As shown
by the figure, there is no bias, b ∼ 0, and χ2 = 1.4, indicating that the standard deviation is slightly
under-predicted, probably because it does not take into account the epistemic error of the GNN (we
measured it to be 0.002, corresponding to about 15% of the standard deviation). The model has
coefficient of determination close to 1, R2 = 0.93, and a precision equal to ±0.015, corresponding
to a 15% error on the mean range value fi = 0.1. This precision is obtained using a volume equal to
0.0225h−3Gpc3, which is a very small fraction of the [O III] survey in the Roman Space Telescope
and a volume thousands of times smaller than the one considered in Foroozan et al. [2022], where
the authors developed a model fit for both the baryon acoustic oscillation (BAO) position and the
interloper fraction. We can compute the RMSE for their BAO+fi analysis using the results in their
Figure 1 for ∆d = 97 h−1Mpc. We obtained RMSE = 3.1× 10−3, which rescaled to the volume
considered here is equal to 0.65. Therefore, it is 40 times larger than the RMSE obtained with the
GNNs; in other words, the GNN models are 40 times more precise in predicting the interloper fraction
than the BAO+fi fit. Moreover, the bias from the BAO+fi model is equal to −2.1× 10−3, which
is an order of magnitude larger than the bias obtained with GNNs. However, we should remember
that the comparison is not truly fair since the GNN has been trained at fixed cosmology, whereas the
BAO+fi fit includes variation in cosmology via the dilation parameters.

Variation of halo bias and cosmology We consider progressively more complicated tasks where
the training dataset displays variation in halo bias among different catalogs but same cosmology
(using SET1) and variation in both halo bias and cosmology (using SET2). In the former case, the
GNN aims at learning the mean and the standard deviation of the posterior distribution p(fi|G)
marginalized over the halo bias scheme; in the latter, the posterior distribution is marginalized over
both cosmology and halo bias. In both cases, the performance of the best GNN models is degraded
compared to the instance where both halo bias and cosmology are fixed, with precision equal to
±0.025 (±0.038) and R2 = 0.8 (R2 = 0.6) in the first (second) case (see second and third panel of
Figure 1). The OPTUNA study performed in the second case suggests the need for larger linking radii
(currently limited by the GPU memory). An alternative way to add information coming from large
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scales consists in declaring a global attribute for each graph, for example a guess for the cosmology
in the form of 5 scalars describing the cosmological parameters. In this case the GNN can reach
a precision equal to ±0.029 and R2 = 0.75 (right panel in Figure 1), giving a better performance
similar to the case where only the halo bias is varied.

5 Conclusions

GNNs are designed to handle sparse and irregular data, such as galaxy or halo catalogs. In this paper,
we showed that they can solve problems where one needs to identify a sub-sample of objects whose
spatial properties differ from that of the core sample, such as interloper galaxies. In particular, we
investigated if small-scale information, which is typically not used for cosmological constraints, can
be used by GNNs to determine the interloper fraction. We found that GNNs perform well if the
underlying cosmology is known or can be guessed with a small uncertainty, while they produce worse
results if the cosmology is unknown and the large-scale information cannot be accessed. In order to
improve the efficiency of the GNN, we need to include large-scale information in the graph, such
as the large-scale power spectrum. However, given the small volume occupied by the graphs, their
power spectrum is cosmic variance (noise) dominated on large scales. A more promising venue to
include large-scale information is, for example, represented by hierarchical GNN [Sobolevsky, 2021],
which would allow for larger rlink. Moreover, GNNs have shown to be powerful tools to constrain
cosmology using the full 3D galaxy field information [Villanueva-Domingo and Villaescusa-Navarro,
2022, de Santi et al., 2023]. A further generalization of the method proposed in this paper could
consist of the simultaneous inference of interloper fraction and cosmological parameters.
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