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Abstract

The likelihood ratio is a crucial quantity for statistical inference that enables hy-
pothesis testing, construction of confidence intervals, reweighting of distributions,
and more. For modern data- or simulation-driven scientific research, however,
computing the likelihood ratio can be difficult or even impossible. Approximations
of the likelihood ratio may be computed using parametrizations of neural network-
based classifiers. By evaluating four losses in approximating the likelihood ratio
of univariate Gaussians and simulated high-energy particle physics datasets, we
recommend particular configurations for each loss and propose a strategy to scan
over generalized loss families for the best overall performance.

1 Introduction

Claiming a scientific discovery requires a hypothesis test, e.g. a statistical threshold for claiming
that one’s experimental data reject the null hypothesis H0 in favor of an alternative hypothesis H1.
By the Neyman-Pearson lemma [1], the strongest (“uniformly most powerful”) measure of whether
the experimental data x support H0 vs. H1 is a likelihood ratio test. These tests are particularly
widespread in reporting results in High-Energy Physics (HEP), but are also commonly used in
statistical analyses for many diverse scientific domains. The need for likelihood ratios goes beyond
hypothesis testing, too—they can also be used to reweight a distribution to align with a target
distribution, such as reweighting simulation samples to match real data [2–9].

In practice, H0 and H1 are defined by the sets of parameters θ0 and θ1, yielding probability densities
p(x | θ0) and p(x | θ1). However, these densities may be unknown or very difficult to compute, as in
the case of complex simulation models, rendering the computation of their ratio impossible. In such
cases, it is well-known in statistics literature [10–12] that we can directly approximate the likelihood
ratio L(x) by configuring a neural network classifier to use the “Likelihood Ratio Trick” (Theorem
1.1):
Theorem 1.1 (“Likelihood Ratio Trick”). For a convex loss functional of the form

L[f ] = −
∫

dx

(
p(x | θ0)A(f(x)) + p(x | θ1)B(f(x))

)
, (1)
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where f : Rn → R is a learnable function, the extremum is achieved when

−B′(f(x))

A′(f(x))
=

p(x | θ0)
p(x | θ1)

= L(x). (2)

As long as −B′(f)/A′(f) is a monotone rescaling of f , a neural network classifier configured to
minimize L[f ] will approximate the likelihood ratio L(x).

In Eq. 1, A(f) and B(f) can take a number of forms to define a neural network classifer loss. In the
limit of infinite training data, the choice of A(f) and B(f) should be irrelevant. In practice, however,
this choice could significantly alter the effectiveness of Theorem 1.1.

To understand these effects in practice, we directly compare the four loss functionals defined in Table
1 with various choices of activation functions. The minimizations of each of the four loss functionals
directly corresponds to minimizing some statistical divergence, up to an overall scaling and offset
[13].

Loss Name A(f) B(f) Related Divergence
Binary Cross-Entropy (BCE) ln(f) ln(1− f) 2(Jensen-Shannon − log 2)
Mean Squared Error (MSE) −(1− f)2 −f2 1

2 (Triangular − 1)
Maximum Likelihood Classifier (MLC) ln(f) 1− f Kullback-Liebler
Square Root (SQR) − 1√

f
−
√
f 2

(
Hellinger2 − 1

)
Table 1: The four primary loss functionals considered for comparing the effectiveness of the
Likelihood Ratio Trick under different configurations.

On top of those four loss functionals, we also consider two parametric families of loss function-
als, created by generalizing the MSE and SQR loss functionals. While there are several possible
parametrizations from which to choose1, we selected the following for simplicity: for the MSE loss,
we considered a power parameter p ∈ R, where p = 2 is the default value, and for the SQR loss, we
considered a root parameter r ∈ R, where r = 1 is the default value. We exclude the cases p ∈ (0, 1)
and r = 0 as the corresponding loss functionals are non-convex, and as such the likelihood ratio trick
does not apply. Overall, this yields the following two families of losses:

Loss Name A(f) B(f)

p-MSE −(1− f)p −fp

r-SQR −f− r
2 −f

r
2

Table 2: Generalizations of MSE and SQR losses to entire families of losses parametrized by p and r.
Values of p = 2 and r = 1 correspond to the original definitions of the losses.

All the loss functionals are compared on the task of estimating the likelihood ratio for one-dimensional
Gaussian datasets (Section 2) as well as HEP simulation datasets (Section 3). We conclude in Section
?? with general recommendations for specifying the loss function when applying Theorem 1.1 for
scientific analyses.

2 One-Dimensional Gaussians

In this section, we examine which of the loss functionals (with which kinds of activation functions)
perform the best on a simple example of a one-dimensional Gaussians dataset. We consider two
one-dimensional Gaussian distributions (see Appendix A) with slightly different means and unit
variances: X0 ∼ Normal(µ = +0.1, σ = 1) and X1 ∼ Normal(µ = −0.1, σ = 1) and estimate the
likelihood ratio between them using Theorem 1.1. In particular, we train neural network classifiers to
minimize the loss functionals and compare their performances in estimating the likelihood ratio.

1For example, to enforce non-singular behavior at r = 0 for SQR, one could consider A(f) = (1−f− r
2 )/|r|

and B(f) = (1 − f
r
2 )/|r|. Another interesting parametrization is A(f) = (fq − 1)/q and B(f) = 1 −

f (q+1)/(q + 1), which is minimized at q = 1.
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The neural networks parametrize the learned function f as ϕ(z), where z is the pre-activation output
of the network and ϕ is the final activation function. For the BCE and MSE losses, the extremum is
achieved when L = f/(1− f), so f is restricted to the range f ∈ (0, 1). Three appropriate activation
functions ϕ : R → (0, 1) were considered for these two losses: the somewhat standard logistic loss
σ(z) = (1+ e−z)−1, the cumulative distribution function of a Gaussian Φ(z), and 1

π (tan−1(z) + π
2 ).

The MLC and SQR losses instead yield L = f , so three different activation functions ϕ : R → (0,∞)
were chosen to suit the range: the typical choice ReLU(z), as well as z2 and ez .

2.1 Methods

For each pairing of loss functional and activation function, we trained 100 independent, identical
classifier models on two Gaussian datasets of 106 samples each. Each classifier was evaluated on the
interval (−6, 6) and transformed into an estimator for the likelihood ratio on the same interval.

To numerically compare the performances of different classifiers in learning the likelihood ratio, we
computed their empirical mean absolute errors over 105 samples. For the estimated likelihood ratio
L̂, the mean absolute error is defined as MAE[L̂] = E[|L(X)− L̂(X)|]. We computed the MAE for
each classifier architecture as an empirical average over the 100 different classifiers to quantify how
well each estimator approximated the likelihood ratio. This allowed us to numerically compare how
each activation function affected the performance of the loss functional.

We then compared how the choice of the parameters p and r changed the effectiveness of the p-MSE
and r-SQR losses in learning the likelihood ratio. We scanned over values of p and r in the interval
[−2, 2]. For each value of p and r considered, we trained 20 models on the corresponding p-MSE or
r-SQR loss functional and averaged the mean absolute errors of the 20 models together to find the p∗
and r∗ that minimized the MAE. Each model used the best-performing activation function for their
respective losses. As shown in the next section, these were σ(z) for MSE and ez for SQR.

2.2 Results

Table 3 displays the empirical MAEs for the various loss functional and activation function pairs.

Loss Name σ(z) Error Φ(z) Error 1
π (tan−1(z) + π

2 ) Error
BCE 0.0081 0.0003 0.0113 0.0004 0.0089 0.0003
MSE 0.0081 0.0003 0.0110 0.0004 0.0100 0.0003
p∗-MSE 0.0046 0.0001 — — — —

Loss Name ReLU(z) Error z2 Error ez Error
MLC 0.0148 0.0004 0.0683 0.0096 0.0083 0.0003
SQR 0.0367 0.0099 0.6756 0.0044 0.0075 0.0003
r∗-SQR — — — — 0.0034 0.0001

Table 3: Mean absolute errors are computed for various loss functional configurations in the classifi-
cation of two univariate Gaussians of 106 samples. 100 independent and identical classifiers were
trained for each configuration to calculate the uncertainties. Errors represent one standard deviation.
The activation functions in the first column represent the typical choices for each loss functional.

Without modifying the typical setup for these loss functionals—i.e. using σ(z) for BCE and MSE
and ReLU(z) for MLC and SQR—one might conclude from the results in Table 3 that BCE and MSE
are the better overall estimators of the likelihood ratio. SQR loss, in particular, has an error nearly
five times as high as BCE or MSE in this context.

BCE and MSE losses do perform best with their typical choice of activation, σ(z). However, selecting
ez instead of ReLU(z) greatly improves the performance of MLC and SQR, reducing the MAE
associated with each loss functional by 44% and 80%, respectively.
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An additional dramatic error reduction is introduced by scanning over p and r in the generalized
forms of MSE and SQR losses. The values p∗ and r∗ minimizing the MAE were p∗ = 1.242 and
r∗ = 0.018. The scan over r and some discussion regarding the optimization is presented in Section
4, and the scan over p is shown in Appendix B. The use of the p∗-MSE and r∗-SQR loss functionals
reduce the MAE from the standard MSE and SQR loss functionals by 43% and 55%.

Overall, the four standard loss functionals (without optimizing over loss families) all perform about
the same after accounting for appropriate choices of activation functions, but the SQR loss functional
performs the best. Optimizing over p and r results in a reduction in MAE by about half, with the
r∗-SQR performing the best, followed by the p∗-MSE.

3 High-Energy Particle Physics Simulation

To test the conclusions from the univariate Gaussian case on a more complex scientific dataset, we
compared the same loss functional configurations on the task of estimating the likelihood ratio for
simulated high-energy particle physics datasets [14] with four observables: leading jet transverse
momentum (pT ), rapidity (y); azimuthal angle (ϕ), and invariant mass (m).

Datasets The datasets consist of particle-level and detector-level simulated QCD jets originating
from Z + jets events. Z + jets events from proton-proton collisions generated at

√
s = 14 TeV were

simulated using HERWIG 7.1.5 [15–17] with the default tune and PYTHIA 8.243 [18–20] tune 21 [21]
(ATLAS A14 central tune with NNPDF2.3LO). For the generated events, the pT of the Z boson is
required to be larger than 150 GeV. Events then are passed through the DELPHES 3.4.2 fast detector
simulation [22] of the CMS detector. The datasets consist of the highest-momentum jet from Z boson
events with pT ≥ 200 GeV. This process ultimately yields about 1.6 million jets for each simulation.

3.1 Methods

As the true likelihood ratios are unknown for these samples, we fit Normalizing Flows [23] to each
sample to estimate their generating distributions. These flows were validated by training an additional
neural network classifier to distinguish between data sampled from the flows and the original datasets,
then verifying that the AUC was approximately 0.5. We then used the flows as proxies for the
underlying distributions of these datasets, creating new datasets by sampling from the flows. We
repeated the same studies from Sec. 2, and continued to use the MAE as our figure-of-merit.

3.2 Results

Table 4 displays the empirical MAEs over the different classifiers for the various loss functional and
activation function pairs.

Loss Name σ(z) Error Φ(z) Error 1
π (tan−1(z) + π

2 ) Error
BCE 0.1461 0.0003 0.1485 0.0003 0.1469 0.0003
MSE 0.1462 0.0003 0.1484 0.0003 0.1476 0.0003
p∗-MSE 0.1460 0.0003 — — — —

Loss Name ReLU(z) Error z2 Error ez Error
MLC 0.2011 0.0008 0.2368 0.0127 0.1467 0.0003
SQR 0.2683 0.0051 0.8011 0.0186 0.1463 0.0003
r∗-SQR — — — — 0.1447 0.0002

Table 4: Mean absolute errors are computed for various loss functional configurations in the classifi-
cation of two simulated high-energy physics datasets of 1.6 · 106 samples each. 100 independent and
identical classifiers were trained for each configuration to calculate the uncertainties. Errors represent
one standard deviation. The activation functions in the first column represent the typical choices for
each loss functional.

2A similar MAE was achieved with p∗ = 1.08, but 1.24 was selected for its numerical stability.
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As shown in Table 4, the same activation functions that perform the best for each loss from Section
2 are also optimal in the physics case. BCE and MSE losses perform best with the default choice
of activation function, σ(z). For MLC and SQR losses, using ez instead of the default choice of
ReLU(z) improves the MAE by 27% and 45%, respectively.

Scanning over p and r found that the values p∗ = 1.92 and r∗ = −0.25 minimize the MAE. See
Section 4 and Appendix B for the scans. These optimizations over p and r result in comparably more
marginal reductions of the MAE from the standard MSE and SQR loss functionals by 0.1% and 1%.

4 Landscapes of Generalized Losses

The scans of r for the Gaussian and physics datasets are shown in Figure 1. (Scans of p are shown in
App. B). Generally, values of r close to 0 tended to result in the smallest mean absolute errors. The
vertical features at r = 0 are due to the non-convexity of the r-SQR loss functional at r = 0; as such,
the Likelihood Ratio Trick does not apply.
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Figure 1: MAEs for classifiers trained on r-SQR losses for r ∈ [−2, 2], computed from 20 indepen-
dent and identical classifiers for each r. Arrows indicate the default choice of r = 1.

A deeper investigation of the trends displaying in these plots is omitted, but we describe the results of
the investigation here. In simpler, two-parameter classifiers σ(ax+ b), we can directly examine the
shape of the loss as a function of the parameters a and b. For such classifiers, the magnitudes of r
and p correspond to the steepness of the loss landscape around the minimum (a∗, b∗).

In particular, values of r close to 0 yield shallow landscapes for which there is a large space
of classifiers with close-to-optimal performance. That is, small perturbations to (a∗, b∗) do not
change the performance of the classifiers very much from optimality. In contrast, large values of
r corresponded to steeper landscapes for which only the optimal classifier performs well; small
perturbations to (a∗, b∗) result in much worse performance.

5 Conclusion

Choosing optimal activation functions for each loss functional is crucial to achieving the best possible
likelihood ratio estimate. Our experiments suggest that of the activations we considered, σ(z) (for
BCE and MSE) and ez (for MLC and SQR) are the best.

For simple cases such as one-dimensional Gaussians, all four losses considered performed similarly
with appropriately chosen activation functions. However, the mean absolute error in estimating the
likelihood ratio was about 2 times smaller when optimized values of p and r were selected.

In the more complex case of simulated HEP data, all four losses still performed similarly after
selecting the appropriate activation functions. However, optimizing over p and r only yielded
marginal improvements (at most 1%) in reducing the MAE. The inconsistency in improvement from
the optimization of p and r requires further investigation.

Overall, we recommend pairing the BCE and MSE losses with the logistic activation and the MLC and
SQR losses with the exponential activation. The loss landscape will vary with each new application,
so we recommend that future researchers perform a scan along p or r to find an optimum value as
part of hyperparameter optimization.
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A Datasets and Training Details

All of our classifiers were implemented as neural networks using KERAS [24] with a TENSORFLOW
[25] backend and ADAM [26] optimizer. Each classifier consisted of three hidden layers with 64,
128, and 64 nodes, sequentially. Rectified Linear Unit (ReLU) activation functions were used for the
intermediate layers, with the activation for the output layer depending on the loss used to train the
neural network and the parametrization being tested. Each of the three hidden layers is followed by a
dropout layer with dropout probability of 10%.

Unless otherwise stated, the networks were trained with 1,000,000 samples (750,000 used for training
and 250,000 used for validation). 100,000 separate samples were used to evaluate the networks’
performances (in particular, to calculate their mean absolute errors). Each network was trained for
up to 100 epochs with a batch size of 10%, as in [13]. If the validation loss did not decrease for 10
consecutive epochs, the training was stopped (early stopping with a patience of 10). No detailed
hyperparameter optimization was done.

B Generalized MSE Losses

The scans discussed in 2.1 and 3.1 indicated that values of p slightly above 1 or slightly below 0 yield
better losses with which to train classifiers for the likelihood ratio trick.
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Figure 2: Mean absolute errors for classifiers trained on p-MSE losses. For each p ∈ [−2, 2], 20
independent and identical classifiers were trained using the corresponding p-MSE loss to estimate the
MAE. Arrows indicates the default choice of p = 2.

Figure 2 displays the results of these scans. The vertical features for p ∈ [0, 1) are due to the
non-convexity of the p-MSE loss functional for those values of p; as a result, the likelihood ratio trick
does not work for such values.

In the Gaussians data, small values of p reduce the MAE by about half in comparison to the standard
choice of p = 2. However, in the high-energy particle physics dataset, values of p other than p = 2
do not perform much better; our scan found that values of p close to 2 minimized the MAE out of all
values of p we searched. Using the optimized value of p∗ = 1.92 over p = 2 resulted in a marginal
improvement: the MAE was reduced by less than 1% (see 4). However, it is possible that scanning
over a larger range of values for p, e.g. p ∈ [2, 3], could result in a better value of p∗.
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