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Abstract

As particle accelerators increase their collision rates, and deep learning solutions
prove their viability, there is a growing need for lightweight and fast neural network
architectures for low-latency tasks such as triggering. We examine the potential
of one recent Lorentz- and permutation-symmetric architecture, PELICAN, and
present its instances with as few as 19 trainable parameters that outperform generic
architectures with tens of thousands of parameters when compared on the binary
classification task of top quark jet tagging.

1 Introduction

Particle collisions at the Large Hadron Collider at CERN happen every 25 nanoseconds, producing
immense amounts of data that have to be processed in real time. Much of the event filtering is done
by the Level-1 trigger [1, 5], which uses algorithms implemented on FPGAs that need to operate at
below-microsecond latency to avoid loss of valuable data. Low-latency tasks include charged particle
track reconstruction and energy measurements. Implementing neural networks under such constraints
is a significant challenge, however the most recent attempts to do so have finally surpassed their
traditional non-ML counterparts. The current state-of-the-art implementations in this area are based
on the JEDI-net Graph Neural Network (GNN) architecture, see [17, 23, 24]. The network input
data consist of lists of jet constituents, with a certain number of geometric features describing each
constituent.

GNN architectures are inherently permutation-equivariant, providing a significant boost to efficiency
and model size by virtue of weight sharing, but no other physical symmetries are necessarily respected.
Physics-informed architectures that are inherently equivariant with respect to rotational and Lorentz-
boost symmetries have recently shown themselves to provide state-of-the-art performance at tasks
such as jet tagging (see e.g. [2, 3, 4, 9, 12, 15]), and they do so despite the relatively small model size.

In this work we study the current state-of-the-art architecture for top-quark jet tagging, PELICAN
[4]. It is fully Lorentz-invariant and its permutation-equivariant layers are based on the general
higher-order permutation-equivariant mappings introduced in [16, 19]. The full reduction of all
relevant symmetries allows small instances of PELICAN with just a few thousand parameters to
perform on par with much larger models with hundreds of thousands or even millions of parameters.
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Moreover, the simplicity of the architecture presents a unique opportunity for explainability and even
interpretability.

Our goal here is to explore the small model size limit of PELICAN and compare it against the previous
state-of-the-art (and also Lorentz-equivariant) architecture, LorentzNet [9]. The benchmark task for
this comparison is that of top-quark tagging due to the publicly available dataset [10] and the extensive
prior exploration of architectures trained on it [12]. The input consists of a list of 𝑁 4-momenta of
jet constituents, {𝑝𝑖}𝑁𝑖=1 which PELICAN reduces to the 𝑁 × 𝑁 array of pairwise Lorentz-invariant
dot products, 𝑑𝑖 𝑗 = 𝑝𝑖 · 𝑝 𝑗 . Thus the reduced input is an array with one channel. We find that a
stripped down version of PELICAN consisting of nothing but two linear permutation-equivariant
blocks with just two channels in the hidden layer and exactly one nonlinear activation function in
between outperforms generic architectures such as the fully-connected TopoDNN which has 59k
parameters [12]. This model nominally has 26 parameters, but through absorption of multiplicative
factors and a simplification of the output layer that number can be effectively reduced to 19. Despite
the costly 𝑁2 scaling of the memory that PELICAN requires, its symmetric architecture can provide
ultra-lightweight networks that can be viably used in low-latency and high-throughput applications.

2 The original PELICAN architecture

The original PELICAN architecture consists of an input block which encodes the 𝑁 × 𝑁 array of
pairwise dot products {𝑑𝑖 𝑗 }, followed by a sequence of so-called Eq2→2 permutation-equivariant
blocks (the index 2 indicates the rank of the input and output arrays) that produce transformed 𝑁 × 𝑁
arrays. Each of these blocks consists of a fully-connected “messaging” layer that mixes the channels
but is shared among all components of the 𝑁 × 𝑁 array, and an “aggregation” layer that applies a
general linear permutation-equivariant operation that exchanges information between the various
components of the array. Finally, a similar Eq2→0 block reduces the array to a permutation-invariant
(rank 0) scalar, after which an output MLP layer produces the two binary classification weights
{𝑤0, 𝑤1}. The diagram below summarizes this architecture, see [4] for details.

{𝑑𝑖 𝑗 } Emb [Eq2→2]𝐿 Eq2→0 MLP {𝑤𝑐} (1)

Notably, the aggregation step inside Eq2→2, called LinEq2→2, applies 15 different operations that
provide a basis for the space of all linear permutation-equivariant transformations of rank 2 arrays,
which temporarily increases the size of the activation by a factor of 15, marking the peak of PELICAN’s
memory utilization. This is followed by a trainable linear layer that applies (𝐶in × 15) × 𝐶out weights
and adds two biases per channel (one bias added to the entire 𝑁 × 𝑁 array and one only to the
diagonal), where 𝐶in and 𝐶out are the number of input and output channels. Similarly, Eq2→0 involves
only 2 aggregators (total sum and trace), a linear layer of shape (𝐶in × 2) × 𝐶out, and one bias per
channel.

3 nanoPELICAN architecture

In this section we simplify the PELICAN architecture to a single hidden layer and reduce parameters
further based on symmetry arguments, which we refer to as nanoPELICAN (nPELICAN). The only
two linear symmetric observables that can be constructed from the input dot products (assuming
sum-based aggregation that does not explicitly depend on the multiplicity 𝑁) are 𝑁 , the jet mass
𝑚2

𝐽
=

∑
𝑖, 𝑗 𝑑𝑖 𝑗 , and the total mass

∑
𝑖 𝑑𝑖𝑖 . The top-tagging dataset has only massless constituents,

so the latter observable is irrelevant. A non-parametric top-tagger based on a simple jet mass cut
achieves an AUC of only 90.6%. A linear PELICAN, which outputs 𝑝(𝑁)𝑚2

𝐽
+ 𝑞(𝑁) with some

learned polynomials 𝑝 and 𝑞, cannot far exceed this.

To this end, we set out to find the smallest and most interpretable modification of PELICAN that is
still nonlinear and performs competitively on the top-tagging task. We thus omit the input embedding
layer, all messaging layers, and the output MLP, and are left with just two linear equivariant blocks,
LinEq2→2 and LinEq2→0, separated by a single activation function, which we choose to be ReLU.
The architecture is summarized in the following diagram:

{𝑑𝑖 𝑗 } LinEqnano
2→2 ReLU LinEq2→0 {𝑤𝑐}. (2)
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Here, we also notice that since the array of dot products, {𝑑𝑖 𝑗 }, is symmetric, and since the constituents
in the top-tagging dataset are massless (𝑑𝑖𝑖 = 0), many of the 15 basis aggregators in LinEq2→2 are
redundant. We remove 5 aggregators that depend only on the diagonal of the input, and one from
each of 4 pairs of aggregators that attain the same value on symmetric inputs. We are left with just 6
aggregators which constitute LinEqnano

2→2. To help with training, each equivariant layer is still preceded
by a Dropout layer. Moreover, keeping BatchNorm layers just before the dropout can also help the
model converge, meanwhile the extra parameters from these layers can be almost completely absorbed
into the linear layers for inference. Namely, the multiplicative weights of BatchNorm can be absorbed
into the following LinEq2→2, whereas the biases can be either left or absorbed into the biases of
LinEq2→2 at the cost of turning them into quadratic polynomials of 𝑁 , adding 2 parameters per output
channel. Since there are two distinct bias parameters per channel, such a BatchNorm effectively adds
min{𝐶in, 4𝐶out} parameters. In the case of LinEq2→0 there is only one bias parameter per channel,
thus the number of added parameters is min{𝐶in, 2𝐶out}.
The only remaining hyperparameter is 𝐶hidden, the number of channels in the hidden layer (between
LinEq2→2 and LinEq2→0). The total number of parameters is then 1 × 6 × 𝐶hidden + 2 · 𝐶hidden +
𝐶hidden × 2 × 2 + 2 = 12𝐶hidden + 2 (ignoring BatchNorm). In addition, since for binary classification
only the difference in weights 𝑤1 − 𝑤0 matters, it is possible to have only 1 output channel, in which
case we have 10𝐶hidden + 1 parameters. The models presented below produce only one output weight
called 𝑤. Leaving in the two BatchNorm layers effectively adds only 3 new parameters if 𝐶hidden > 1
and 2 otherwise. Finally, since we’re using the ReLU activation, which is a homogenous function,
one more multiplicative factor can be absorbed in each channel. The final number of parameters then
is 9𝐶hidden + 4 for 𝐶hidden > 1 and 12 otherwise.

4 Top tagging performance

The top tagging dataset [10] consists of anti-𝑘𝑇 jets [6] corresponding with top quarks (signal) and
light quarks or gluons (background). It includes up to 200 jet constituents per entry, each represented
by a 4-momentum in Cartesian coordinates. A converted version of the dataset that can be directly
used with PELICAN can be found at [11]. For our models we only use the 80 constituents with the
highest transverse momentum 𝑝𝑇 =

√︃
𝑝2
𝑥 + 𝑝2

𝑦 , which is typically enough to saturate our network’s
performance. We follow a training regime almost identical to that in [4], using an Nvidia H100 GPU.
The only changes are that we disable weight decay, extend the training to 140 epochs (4 epochs of
linear warm-up, 124 epochs of CosineAnnealingLR with 𝑇0 = 4 and 𝑇mult = 2, and 12 epochs of
exponential decay with 𝛾 = 0.5), and increase the batch size to 512. Training took about 30 ms per
batch, and the evaluation took about 23 ms per batch (including overhead).

Table 1: Comparison of tiny top-taggers. Averaged over the
top 5 (lowest loss) out of 25 random seeds. Uncertainty given
by the standard deviation. 1/𝜖𝐵 is the background rejection
at 30% signal efficiency.

Architecture Accuracy AUC 1/𝜖𝐵 # Params

LorentzNet𝑛hidden=3 0.907(2) 0.966(3) 174±44 120
nPELICAN𝐶hidden=10 0.921(1) 0.9748(1) 327±20 101
nPELICAN𝐶hidden=3 0.919(1) 0.9730(4) 256±12 31
nPELICAN𝐶hidden=2 0.918(1) 0.9718(6) 243±18 21
nPELICAN𝐶hidden=1 0.895(1) 0.950(2) 81±12 11

We train several models with 𝐶hidden
ranging from 1 to 10. For comparison,
we also train instances of LorentzNet
with only one message passing block
and the number of channels in the hid-
den layers set to 3 and the batch size of
512 (no other changes to hyperparam-
eters and training were made). The
results are reported in Table 2. We
report the accuracy, the area under the
ROC, and the background rejection
(inverse false positive rate) at 30% sig-
nal efficiency (true positive rate). For

each architecture, we pick the model with the lowest cross-entropy loss out of 10 trained instances
initialized with different random seeds.

We observe that nPELICAN achieves competitive AUC and background rejection with as few as 2
channels in the hidden layer. In fact, its AUC surpasses that of the fully-connected TopoDNN with
59k parameters [12] (its average accuracy was 0.929(1), AUC 0.964(14), and background rejection
424 ± 82). Moreover, the AUC of nPELICAN with 10 channels (101 parameters) is only about 1%
behind that of ParticleNet (498k parameters) [21] and even ParT (2.1M parameters) [22]. Meanwhile,
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Fig. 1: Comparison of top-tagger background rejection performance at signal efficiency 𝜖𝑆 = 0.3 as a
function of the number of parameters in each model considered. Results other than nPELICAN are
taken from refs. [2, 4, 7, 9, 12, 13, 14, 18, 20, 21, 22]. Note that the curve for the original PELICAN
was obtained by varying only the network width, so only the rightmost point is fully optimized.

LorentzNet with one message-passing block lags far behind nPELICAN with a similar number of
parameters. A visual comparison with many existing models is presented in Figure 1.

Table 2: Performance of nPELICAN𝑁 – nPELICAN with
𝑁𝛼-scaled aggregators. Metrics defined as in Table 2.

nPELICAN𝑁 width Accuracy AUC 1/𝜖𝐵 # Params

𝐶hidden = 10 0.923(1) 0.9764(1) 448±10 108
𝐶hidden = 3 0.9214(3) 0.9752(2) 384±16 38
𝐶hidden = 2 0.9200(3) 0.9745(1) 368±17 28
𝐶hidden = 1 0.902(2) 0.960(2) 150±16 18

Interestingly, at such low depth the
removal of fully connected messag-
ing layers from PELICAN actually im-
proved the performance. The element
of the original network that can boost
nPELICAN’s performance the most
with only a few new parameters is the
𝑁-dependent scaling of aggregators.
In our tests, replacing sum aggregation

with means led to very low performance of nPELICAN, however enabling PELICAN’s original
flexible scaling of the means by an extra factor of 𝑁𝛼/�̄�𝛼 turns out to be very beneficial, see Table 2.

5 Interpreting nanoPELICAN

Considering the extremely low complexity and relatively high performance of nPELICAN, there is
high potential for a full interpretation of the model. Before attempting to interpret the weights, it
is crucial to minimize any redundancies. In particular, since ReLU is a homogenous function, one
multiplicative factor from the weights in LinEq2→0 can be absorbed into the weights and biases
of LinEq2→2 in each channel of the hidden layer. For the model with 𝐶hidden = 2 this means that
the number of parameters can effectively be reduced to 19. Explicitly, the model can be written
analytically as

𝑤 = 𝑏2→0 +
𝐶hidden∑︁
ℎ=1

𝑐2→0
0ℎ

1
�̄�2

∑︁
𝑖, 𝑗

ReLU

(
6∑︁

𝑏=1
𝑐2→2
𝑏ℎ Agg𝑏 (𝑑)𝑖 𝑗 + 𝑏2→2

ℎ + 𝑏2→2
diag,ℎ𝛿𝑖 𝑗

)
+

+
𝐶hidden∑︁
ℎ=1

𝑐2→0
1ℎ

1
�̄�

∑︁
𝑖= 𝑗

ReLU

(
6∑︁

𝑏=1
𝑐2→2
𝑏ℎ Agg𝑏 (𝑑)𝑖 𝑗 + 𝑏2→2

ℎ + 𝑏2→2
diag,ℎ𝛿𝑖 𝑗

)
. (3)

Here, 𝑤 is the output score (the jet is tagged as a top quark if 𝑤 > 0); 𝑐2→2, 𝑏2→2, and 𝑏2→2
diag are the

weights and biases of LinEq2→2; 𝑐2→0 and 𝑏2→0 are the weights and the bias of LinEq2→0; index 𝑏
enumerates the 6 aggregators of LinEq2→2; index ℎ enumerates the channels in the hidden layer. �̄� is
a hyperparameter that is used to control the magnitude of the sums over constituents, here set to be 49
(it is similarly used inside the aggregators Agg𝑏).
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Therefore the ReLU effectively sets a linear constraint on the dot products, and the output takes
a sum over only those pairs (𝑖, 𝑗) that satisfy the constraint. More explicitly, denoting the jet
momentum by 𝐽 =

∑
𝑖 𝑝𝑖 , the argument of the ReLU is a linear combination of relative masses

(𝑚2
𝑖 𝑗

= −(𝑝𝑖 − 𝑝 𝑗 )2 = 2𝑑𝑖 𝑗 ), jet-frame masses 𝑝𝑖 · 𝐽, 𝑝 𝑗 · 𝐽, the jet mass 𝑚2
𝐽
=

∑
𝑖 𝑗 𝑑𝑖 𝑗 , and a

constant term. In addition, we found that these parameters are stable across multiple random
initializations, indicating that they can be directly interpreted as unique physical constraints that
encode Lorentz-invariant quantities such as the top quark mass, which we intend to elucidate in future
work.

6 Conclusions

We have presented nPELICAN, a miniaturized a version of the PELICAN architecture, which is
both surprisingly performant relative to much larger networks and can be rewritten simply as a
constraint on Lorentz invariant quantities with a single ReLU activation function. This represents a
novel development in interpretability for neural networks in particle physics, and gives hope for the
interpretability of much larger networks. Future studies will exploit the stability of the nPELICAN
parameters to determine their dependencies on features of the training data such as jet energies and
particle masses, as well as relating these parameters to traditional, discriminating kinematic variables
for jet-tagging, such as jet constituent multiplicity, subjet multiplicity [25] and jet shapes [8]. The
code can be found at https://github.com/abogatskiy/PELICAN-nano.
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