
High-dimensional and Permutation Invariant Anomaly
Detection with Diffusion Generative Models

Vinicius Mikuni

National Energy Research Scientific Computing Center,
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 vmikuni@lbl.gov

Benjamin Nachman
Physics Division,

Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Berkeley Institute for Data Science,

University of California, Berkeley, CA 94720, USA bpnachman@lbl.gov

Abstract

Methods for anomaly detection of new physics processes are often limited to low-
dimensional spaces due to the difficulty of learning high-dimensional probability
densities. Particularly at the constituent level, incorporating desirable properties
such as permutation invariance and variable-length inputs becomes difficult within
popular density estimation methods. In this work, we introduce a permutation-
invariant density estimator for particle physics data based on diffusion models,
specifically designed to handle variable-length inputs. We demonstrate the efficacy
of our methodology by utilizing the learned density as a permutation-invariant
anomaly detection score, effectively identifying jets with low likelihood under
the background-only hypothesis. To validate our density estimation method, we
investigate the ratio of learned densities and compare to those obtained by a
supervised classification algorithm.

1 Introduction
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Figure 1: Diagram of the proposed anomaly detec-
tion model.

Anomaly detection (AD) has emerged as a
complementary strategy to classical model-
dependent searches for new particles at the
Large Hadron Collider and elsewhere. These
tools are motivated by the current lack of ex-
cesses and the vast parameter space of possi-
bilities [1, 2]. Machine learning (ML) tech-
niques are addressing these motivations and also
allowing for complex particle physics data to
be probed holistically in their natural high di-
mensionality [3]. Nearly all searches for new
particles begin by positing a particular signal
model, simulating the signal and relevant Stan-
dard Model (SM) backgrounds, and then train-
ing (with or without ML) a classifier to distinguish the signal and background simulations. Machine
learning–based AD tries to assume as little as possible about the signal while also maintaining the
ability to estimate the SM background. Two main classes of ML approaches are unsupervised and
weakly/semi-supervised. Unsupervised methods use ‘no’ information about the signal in training
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while weakly/semi-supervised methods use limited or noisy labels. The ‘no’ is in quotes because
there is often implicit signal information used through event and feature selection. At their core,
unsupervised methods select events that are rare, while weakly/semi supervised methods focus on
events that have a high likelihood ratio with respect to some reference(s). Even though a number
of weakly supervised methods have statistical guarantees of optimality that unsupervised method
lack [4, 5], there has been significant interest in unsupervised AD because of its flexibility. The flexi-
bility of unsupervised learning leads to a number of challenges. There is no unique way to estimate
the probability density of a given dataset, with some methods offering only an implicit approximation
through proxy quantities like the reconstruction fidelity of compression algorithms. Even though
particle physics data are often described by high- (and variable-)dimensional, permutation-invariant
sets (‘point clouds’), there has not yet been a proposal to use explicit density estimation techniques
for AD that account for all of these properties.

We propose to use point cloud diffusion models combined with explicit density estimation for AD,
summarized in Fig. 1. Our approach is based on Ref. [6], and inherits the ability to process variable-
length and permutation-invariant sets. From the learned score function, we estimate the data density
and provide results for two different diffusion models; one trained with standard score-matching
objective and one trained using maximum likelihood estimation. Since the true density is not known,
we quantify the performance of the density estimation with likelihood ratios. Finally, we demonstrate
the performance of the density as an anomaly score for top quark jets as well as jets produced from
dark showers in a hidden valley model. Other tasks that require access to the data density could also
benefit from our method.

2 Methodology

Score-based generative models are a class of generative algorithms that aim to generate data by
learning the score function, or gradients of the logarithm of the probability density of the data. The
training strategy presented in Ref. [7] introduces the idea of denoising score-matching, where data
can be perturbed by a smearing function and matching the score of the smeared data is equivalent
to matching the score of the smearing function Ref. [8]. Given some high-dimensional distribution
x ∈ RD, the score function we want to approximate, ∇x log pdata, with x ∼ pdata, is obtained by
minimizing the following quantity

1

2
EtEpt(x)

[
λ(t) ∥sθ(xt, t)−∇xt log pt(xt|x0)∥22

]
. (1)

The goal of a neural network sθ(xt, t) with trainable parameters θ and evaluated with data xt that
have been perturbed at time t is to give a time-dependent approximation of the score function. The
time dependence of the score function is introduced to address the different levels of perturbation
used in each time step. At times near 0, at the beginning of the diffusion process (x(0) := x0 := x),
the smearing applied to data is small, gradually increasing as time increases and ensures that at
longer time scales the distribution is completely overridden by noise. Similarly, the positive weighing
function λ(t) can be chosen independently and determines the relative importance of the score-
matching loss at different time scales. The score function of the perturbed data is calculated by
using a Gaussian perturbation kernel pσ(x̃|x) := N (x, σ2) and pσ(x̃) :=

∫
pdata(x)pσ(x̃|x)dx,

simplifying the last term of Eq. 1

∇x̃ log pσ(x̃|x) =
x− x̃

σ2
∼ N (0, 1)

σ
. (2)

The learned approximation to the score function can then be used to recover the data probability
density by solving the following equation:

log p0(x0) = log pT (xT ) +

∫ T

0

∇ · f̃θ(xt, t)dt, (3)

with
f̃θ(xt, t) = [f(t)xt −

1

2
g(t)2sθ(xt, t)]. (4)

The drift (f ) and diffusion (g) coefficients are associated with the parameters of the Gaussian
perturbation kernel. In our studies, we use the VPSDE [9] framework with velocity parameterization
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as used in [6]. In this parameterization, the score function of the perturbed data reads:

sθ(xt, t) = xt −
αt

σt
vθ(xt, t), (5)

where the outputs of the network prediction, vθ(xt, t), are combined with the perturbed data, xt, and
the mean and standard deviation of the induced perturbation kernel N (x(0)α, σ2). A cosine schedule
is used with αt = cos(0.5πt) and σt = sin(0.5πt). The resulting drift and diffusion coefficients are
also identified based on the perturbation parameter as

f(x, t) =
d logαt

dt
xt, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t . (6)

While the estimation of the data probability density is independent from the choice of the weighing
function λ(t) described in Eq. 1, different choices can enforce different properties to the learned score
function. For example, the velocity parameterization in Eq. 5 implicitly sets λ(t) = σ(t)2, which
avoids the last ratio in Eq. 2 that diverges as σ(t) → 0 at times near 0. On the other hand, Ref. [10]
shows that choosing λ(t) = g(t)2 turns the training objective in Eq. 1 into an upper bound to the
negative log-likelihood of the data, effectively allowing the maximum likelihood training of diffusion
models and possibly leading to more precise estimates of the data probability density. The negative
aspect of this choice is that the lack of the multiplicative σ2 term can lead to unstable training. This
issue can be mitigated by using an importance sampling scheme that reduces the variance of the loss
function. During the training of the likelihood weighted objective we implement the same importance
sampling scheme based on the log-SNR implementation defined in [11] where the time parameter is
sampled uniformly in − log(α2/σ2)while in the standard implementation the time component itself
is sampled from an uniform distribution.

3 Results

The top quark tagging dataset is the widely-used community standard benchmark from Ref. [12, 13].
The background consists of dijets produced via Quantum Chromodynamics (QCD) and the signal is
top quark pair production with all-hadronic decays. All jets in the range 550 GeV < pT < 650 GeV
and |η| < 2 are saved for processing. Each jet is represented with up to 100 constituents (zero-padded
if fewer; truncated if more). To illustrate the anomaly detection abilities of our approach, we also
simulate jets produced from a dark shower within a hidden valley model [14–17]. Our dark showers
are motivated by Ref. [18], and consist of a Z ′ with a mass of 1.4 TeV that decays to two dark
fermions charged under a strongly coupled U(1)’. These fermions have a mass of 75 GeV and
hadronize into dark pion and ρ mesons, each of which can decay back to the Standard Model.

The network implementation and training scheme used to train the diffusion model are the same
ones introduced in Ref. [6], based on the DEEPSETS [19] architecture with Transformer layers [20].
This model is trained to learn the score function of the jet constituents in (∆η,∆ϕ, log(1− pTrel))
coordinates, with the relative particle coordinates ∆η = ηpart − ηjet, ∆ϕ = ϕpart − ϕjet, and pTrel =
pTpart/pTjet calculated based on the jet kinematic information. The particle generation model is
conditioned on the overall jet kinematics described by (pTjet, ηjetmass, Npart) The overall jet kinematic
information is learned (simultaneously) by a second diffusion model as done in Ref. [6] using a
model based on the RESNET [21] architecture.

All features are first normalized to have mean zero and unit standard deviation before training. The
probability density is calculated with Eq. 3. The integral is solved using SCIPY [22] with explicit
Runge-Kutta method of order 5(4) [23, 24] with absolute and relative tolerances of 5 × 10−5 and
10−4, respectively. Lower and higher values of the absolute and relative tolerances were tested with
overall results remaining unchanged. We define the anomaly score in this work as

anomaly score = − log(p(jet)p(part|jet)1/N ), (7)

with the model learning the likelihood in the particle space conditioned on the jet kinematic informa-
tion (p(part|jet)) normalized by the particle multiplicity. We show the distribution of the anomaly
score in Fig. 2 for diffusion models trained exclusively on QCD or top quark jets.

The diffusion model training using maximum likelihood (λ(t) = g(t)2) also presents, on average,
lower anomaly score compared to the standard diffusion approach (λ(t) = σ(t)2). With this choice
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Figure 2: Anomaly score for QCD, top quark, and Z ′ jets evaluated on the model trained exclusively
on QCD (left) and top quark (right) jet events.
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Figure 3: Significance improvement characteristic curve (left) and receiver operating characteristic
curve (right) for different classes of anomalies investigated in this work.

of anomaly score, we investigate the the significance improvement characteristic curve (SIC), and
Receiver operating characteristic (ROC) curve shown in Fig. 3.

For both classes of anomalies we observe maximum values for the SIC curve above 1, supporting
the choice of metric for anomaly detection. Conversely, the maximum-likelihood training results in
slightly lower SIC curve for anomalous jets containing the decay products of top quarks.

4 Conclusions and Outlook

In this work we presented an unsupervised anomaly detection methodology based on diffusion
models to perform density estimation. Our method approximates the score function to estimate
the probability density of the data. The diffusion model is trained directly on low-level objects,
represented by particles clustered inside jets. The model for the score function is equivariant with
respect to permutations between particles, leading to a permutation invariant density estimation.
We test different strategies to train the diffusion model, including a standard implementation and
a maximum-likelihood training of the score model. The maximum-likelihood training presents on
average a lower negative-log-likelihood, indicating improved probability density estimation. However,
when applied for anomaly detection, we do not observe notable improvements.
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