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Abstract

Gravitational lensing is one of the most important probes of dark matter and has
recently seen a surge in applications of machine learning techniques. This is
typically studied in the context of supervised learning, but given the upcoming
influx of gravitational lensing data from Euclid and LSST, manual labeling for deep
learning tasks has become an unsustainable approach. To address this challenge,
self-supervised learning (SSL) emerges as a scalable solution. By leveraging
unlabeled strong lensing data to learn feature representations, self-supervised
models have the potential to enhance our understanding of dark matter via the effect
of its substructure in strong lensing images. This work implements contrastive
learning, Bootstrap Your Own Latent (BYOL), Simple Siamese (SimSiam), and
self-distillation with no labels (DINO) using ResNet50 and Vision Transformer
(ViT) networks, to acquire unsupervised embeddings for strong lensing images
simulated for different dark matter models: ultra-light axions, cold dark matter,
and halos without substructure. The learned representations of the encoder are
fine-tuned using supervision and applied to classification and regression tasks
which are also benchmarked against a fully supervised, ResNet50 baseline. Our
results show that the self-supervised methods can consistently outperform their
supervised counterparts.

1 Introduction

One of the most pressing problems in physics today is the identity of dark matter. Originally detected
through its gravitational effects, there has yet to be any detection of dark matter due to interactions
with the Standard Model. Indeed, numerous experiments have constrained a large swath of parameter
space for the most compelling models [1, 2, 3, 4, 5, 6]. A promising avenue to study dark matter, and
possibly take steps towards establishing its identity, has been the use of strong galaxy-galaxy lensing
as a probe of dark matter substructure. This is interesting because the distribution and morphology
of dark matter are intimately related to the underlying microphysical model. While this has been
known for some time, recently machine learning algorithms have seen success in application to this
problem, see for example [7, 8, 9, 10, 11]. In another direction, [12] explored a range of unsupervised
techniques, which also found that integrating an unsupervised model with a supervised one resulted in
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Figure 1: A schematic overview of implemented self-supervised methods (see text for discussion).

higher performance for the task of classification and helped in elucidating the nature of substructure.
These approaches have all been successful in effectively learning meaningful embeddings that capture
the intricate details of dark matter substructure.

Recently, in a slightly different context of lens finding, [13] applied semi-supervised learning for
the identification of strong lenses. They used a data set that consisted of only a small amount of
labeled training data. Indeed, as lensing data becomes more prevalent, the high cost and human bias
associated with labeling make supervised learning increasingly unscalable. In a similar application,
[14] used a self-supervised contrastive learning model trained to identify strong lensing images
from other unlensed galaxies. The results showed that the self-supervised approach outperformed
traditional supervised methods. To date, only simple Convolutional Neural Networks (CNNs) have
been used with the contrastive learning SSL technique in application to strong lensing datasets. In this
work we aim to test contrastive learning [15] in the context of the imprints of dark matter substructure
on strong lensing images while using more complex architectures as well as to expand our scope to
more modern SSL methods such as BYOL [16], SimSiam [17], and DINO [18]. We pre-train and
finetune these methods for downstream tasks for 1) predicting the class of simulated gravitational
lensing images and 2) determining the particle mass for axion dark matter directly from lensing
images.

2 Methods

This section gives a brief introduction to the parts of self-supervised methods relevant to this work
and the overall pretraining and finetuning procedure used in our benchmark.

2.1 Self-Supervised Pretraining

In the domain of unsupervised learning, contrastive learning [15] has become very popular due to its
effectiveness in learning representations from large amounts of unlabelled data [19]. Specifically, it
leverages the idea of learning similar and dissimilar representations of data by contrasting positive
and negative examples. Figure 1 mentions a network C, which is an encoder along with a projected
head and a linear neural network layer, implemented to learn representations through solving rotation
and Gaussian noise augmentation pretext tasks. We experimented with this SSL method by using two
encoders, ResNet50 and a custom Vision Transformer (ViT) [20] with 12 transformer blocks and a
kernel size of 32. Normalized Temperature-scaled Cross Entropy (NT-Xent) loss[21], designed to
minimize the distance between similar items and maximize the distance between dissimilar items in
the embedded space, was used for contrastive learning.

Bootstrap Your Own Latent (BYOL) [16] is a recent advancement in the domain of unsupervised
learning. Unlike traditional contrastive learning methods, BYOL does not require the positive and
negative pairs of images, it rather trains two networks parallelly, the target network and the online
networks; represented as network A (online) and network B (target) as seen in Figure 1. The target
network’s parameters are updated as a moving average of the online network’s parameters. For
BYOL, we implemented random flipping and random rotation as an augmentation.
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Self-distillation with no labels (DINO) [18] is a modern self-supervised method in which we provide
two different augmentations (local and global views) to the teacher and student networks, as seen in
Figure 1 as network A and network B respectively. The network is trained to reduce the cross-entropy
loss for matching the similarity between the two views. Similar to BYOL, network B is an exponential
moving average of network A.

Another self-supervised method we implemented was Simple Siamese (SimSiam) [17]. In contrast
to other learning techniques, it does not require a momentum encoder, memory bank of negative
samples, or large batch sizes that are generally used to avoid the risk of collapsing solutions [22].
It uses a single encoder network, and the same image with two randomly augmented views which
are matched using negative cosine similarity. We used keras [23] to train contrastive learning and
BYOL models on two NVIDIA T4 GPUs and lightly [24] to train DINO and SimSiam models on
NVIDIA A100 GPUs.

2.2 Supervised Finetuning

Our goal is to compare fine-tuned self-supervised methods with their supervised baseline on simulated
strong lensing images for two tasks (a) image classification to identify different types of dark matter
candidates, and (b) regression to detect the mass of the axion from a given image. Initially, an
encoder network is trained without labels to learn representations of the data, using one of the
above-mentioned SSL methods at a time. A suitable neural network featuring fully connected layers
is employed on top of the encoder for supervised fine-tuning. For classification tasks, the network
uses three neurons in the final layer, whereas for regression tasks, it utilizes a single neuron in the last
layer. We test our methods for both tasks on respective holdout test datasets consisting of 15,000
images, the results of which are mentioned in Section 3.

2.3 Datasets

In this analysis, we have constructed two data sets: Model A and Model B which we have made to
resemble mock simulations of galaxy-galaxy strong lensing images from observations with HST- and
Euclid-like surveys, respectively. We generate our simulations with the publicly available package
lenstronomy[25] where we create single channel images sized 64× 64. Our background galaxies,
which are lensed, are modeled with a Sersic light profile. On the dark matter side, we generate three
classes. Our first-class represents lensing from standard cold dark matter (CDM) where our main
halo, which is modeled with a spherical isothermal profile, includes dark matter subhaloes which
are drawn from the standard subhalo mass distribution function (see [7] for further details). Beyond
CDM, we also simulate the lensing signature of ultra-light axion dark matter. Specifically, our axion
simulations correspond to a particle mass ∼ 10−23 eV where the substructure is highly suppressed
and where the main substructure observable is topological defects in the main halo; namely vortex
substructure [7]. The final dark matter model we study consists of one with the absence of any
substructure. Despite not being a realistic model, i.e. observations clearly preclude this possibility,
since we are working with simulations, it serves as a useful scenario to contrast with other dark matter
realizations in testing machine learning models – particularly because its signature is not expected to
be degenerate with CDM or the axion. When generating our simulations we construct 30,000 images
per class and an additional test set of 5,000 images per class.

3 Results

We now present the results for the classification of different models of dark matter. The results for
Model A and Model B are presented in Tables 1 and 2, respectively. We trained all the supervised
baselines with the same augmentation and training scheme as used in the corresponding supervised
finetuning with random weight intialization instead of pretrained self-supervised weights. From these
results, it is clear that, with the exception of one example, our self-supervised algorithms improve the
performance over the supervised alone. In the one exception, ResNet50 with BYOL for Model B, the
performance is effectively equivalent between the supervised and unsupervised iterations.

Going beyond classification, we also study the application of self-supervised algorithms for the task
of regressing on the mass of the axion. That is, we take the images that we have simulated and train
our algorithms to output the known mass of the axion. We present our results in Fig.2 for both our
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Table 1: Model A Test Set Classification Results (Macro AUC)
Method Encoder Supervised Self-Supervised with finetuning

Contrastive (Rotational Pretext) ResNet50 0.960 0.993
Contrastive (Rotational Pretext) ViT 0.977 0.990
Contrastive (Gaussian Noise Pretext) ResNet50 0.960 0.993
Contrastive (Gaussian Noise Pretext) ViT 0.977 0.993
BYOL ResNet50 0.990 0.993
SimSiam ResNet50 0.983 0.995
DINO ResNet50 0.996 0.997

Table 2: Model B Test Set Classification Results (Macro AUC)
Method Encoder Supervised Self-Supervised with finetuning

Contrastive (Rotational Pretext) ResNet50 0.967 0.997
Contrastive (Rotational Pretext) ViT 0.983 0.987
Contrastive (Gaussian Noise Pretext) ResNet50 0.967 0.997
Contrastive (Gaussian Noise Pretext) ViT 0.983 0.990
BYOL ResNet50 0.963 0.960
SimSiam ResNet50 0.984 0.996
DINO ResNet50 0.998 0.998

baseline supervised algorithm, ResNet50, and for various self-supervised algorithms. In the case
of Model A, we find that all self-supervised algorithms perform about the same but our baseline
algorithm is noticeably worse, particularly for axion masses ∼ 10−23 eV. For Model B, the baseline
model performance is significantly worse. In this case, we find that the self-supervised Contrastive
(Gaussian Noise pretext) model does noticeably worse than the other self-supervised algorithms,
though its still performs better than our baseline model. Despite this, the three other self-supervised
algorithms demonstrate great performance at reconstructing the mass of the axion over supervised
baselines from our simulations.

Figure 2: Predicted mass versus simulated mass for Model A (left panel) and Model B (right panel).

4 Conclusion and Limitations

In this work, we found that the learned representation showed robust performance on both classifi-
cation and regression with the results outperforming (in one case, only on par with) the supervised
learning techniques. Our work is an attempt to further the research efforts in applying self-supervised
learning to astrophysical data sets which typically involve large quantities of unlabeled data. Of
course, the specific example that we consider is somewhat unrealistic, in that dark matter in reality
would only be one thing, but our examples serve as a concrete example. A learned representation is
generic and could be reused with a task-specific prediction head for different applications, reducing
the efforts to train a whole network from scratch for newer tasks. As of now, our work only focuses
on a handful of self-supervised methods and neural network architectures. To date, there are more
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recent networks architectures like Convolutional vision Transformer (CvT) [26], Swin Transformer
[27], CrossFormer [28] to name a few and several options for self-supervised learning techniques
such as VICReg [29], EsViT [30] etc., but we leave the implementation of these for future work.
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