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Abstract

In chemistry, electrophilic and nucleophilic reactions are utilized in the design of
new protein reactive drugs, identification of toxic compounds, and the exclusion of
reactive compounds from high throughput screening. In particular, covalent drugs
comprise a class of protein reactive compounds that have seen a lot of interest due
to their potential advantages such as better selectivity, longer effective dose, and
overcoming drug resistances. Despite that, there are currently no reliable screening
tools that go beyond basic substructure matching. In this work, we demonstrate
that graph neural networks models are capable of predicting covalent reactivity and
capturing chemical motifs by looking at gradient activation heatmaps and how they
correlate with chemical theory. We also propose a new dataset, ProteinReactiveDB,
which was used to train graph-based models in this work.

1 Introduction

Most FDA-approved drugs react via reversible intermolecular interactions [1]. Covalent drugs form
covalent linkages that provide more durable connection to the target protein, so they are commonly
used to inhibit or label proteins. Covalent inhibition typically occurs between the amino acid sidechain
and reactive substructure of the molecule, typically referred to as the covalent warhead. The variety
of covalent warheads is large and growing - additional protein reactive substructures are still being
identified [2, 3]. The warhead diversity means that it is not practical to define search patterns for
each of them individually. Moreover, neighboring atoms in a molecule can amplify or reduce both
reactivity and/or efficiency of any of these groups [4].

While covalent inhibitors have significant therapeutic uses, there are other instances where protein re-
activity must be avoided. Protein reactive compounds can have off-target activity due to promiscuous
reactions with other cellular components and can be metabolized at faster rates due to higher elec-
trophilicity. High-throughput screening methods evaluate the noncovalent binding of the compounds
in large chemical datasets to a protein target. Likewise, generative AI method are now being used to
design new compounds optimized to bind to a target [5, 6]. In each case, protein reactive compounds
should be generally excluded from the searchers. Conversely, covalent modification is a common
mode of toxicity, so predicting if a compound is protein reactive is also important in toxicology.

Currently, the most common way to screen for protein reactive compounds is based on the Pan-Assay
INterference compoundS (PAINS) criteria which include motifs to identify compounds that contain
electrophilic groups that are unstable or react promiscuously with proteins. Methods have been
developed to automatically check if compound matches the criteria set for PAINS compounds, such
as the PAINSfilter set of chemical search strings [7]. Although these strings are well-defined, these
filters are not entirely effective as they rely entirely on string matching.

Deep learning and Graph Neural Networks (GNNs) in particular have been widely applied to
chemical problems ranging from property prediction and structure generation to lab experiment

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.



automation[8, 9, 10]. In this work, we train a variety of graph-based models to predict covalent
activity. We also explore the interpretability of their predictions by looking at heatmaps generated
using gradient activation mapping (GradCAM), and how they correlate to known chemical theory.

2 Methods

2.1 Datasets

Table 1: Breakdown of the external test by class and by type
of compounds

Class Type Count
Noncovalent First Disclosures 105

Nonreactive Decoys 49

Covalent Aldehyde 5
Alkyne 13

Aziridine 6
Chloropyridine 6

Epoxides 18
Furan 3

Haloacetamides 11
Isothiocyanates 1

Lactone 27
Nitrile 6

Atypical 28
Quinone 3
Sulfonyl 47

Thioketones 6
Boronic 4
Alkenes 175

ProteinReactiveDB was built on top
of three datasets: CovalentInDB [11],
DrugBank [12], and BindingDB [13];
it acted as training data for all models.
CovalentInDB is a dataset of covalent
inhibitors, and makes up the majority
of ProteinReactiveDB’s positive class.
DrugBank is a dataset composed of
predominantly drug molecules; Bind-
ingDB is a broader dataset of organic
compounds.

A significant effort was made to re-
fine the data, including removing ir-
relevant or misannotated molecules
(such as metallorganics) as well as
finding false positive and false neg-
atives and correcting their label. In
total, ProteinReactiveDB is composed
of 51503 noncovalent inhibitors and
5875 covalent inhibitors.

External Test Data was built to test
the transferability of the models on
the types of compounds that might
be evaluated in a modern medicinal
chemistry campaign. It is comprised
of three major types of molecules:

• Covalent Inhibitors (positive class) - collected from recent literature; composed of
molecules reported to be covalent inhibitors that are not present in the ProteinReactiveDB.

• Nonreactive Decoys (negative class) - constructed from drug-like molecules that contain
substructures typical to covalent inhibitors, but were experimentally determined not to be
such.

• First Disclosures (negative class) - collected from experimental drugs first disclosed 2021-
2023, sourced from literature. These molecules contain features of modern drug candidates;
none of them were reported to act through a covalent mechanism. As such, they were
assigned to the negative class.

Table 1 breaks down the external test data by both class and type.

2.2 Models

Graph Convolutional Neural Networks proved to be the most successful type of models in this
work. Chemical structures can be encoded into molecular graphs, where atoms are represented as
nodes and chemical bonds are represented as edges. For each molecular graph, we let A be the
adjacency matrix, X be the node attributes of the a graph N with n nodes. Let also the degree of
matrix be Dii =

∑
j Aij . From the definition posited by Kipf and Weiling [14], a vanilla graph

convolutional layer can then be defined as:

F l(X,A) = σ(D̃− 1
2 ÃD̃− 1

2F l−1(X,A)W l)

2



where F l is the convolutional activation at the layer l, F 0 = X , Ã = A+ IN is the adjacency matrix
with added self-connections where IN is the identify matrix, W l are the trainable convolutional
weights, D̃ii =

∑
j Ãij , and σ is the nonlinear activation function.

Gradient Activation Mapping is an interpretability technique that first originated to explain how
convolutional neural networks make predictions when classifying images by generating a heatmap
[15]. Pope et al. [16] have shown that it can be also adopted to graph convolutions to generate graph
heatmaps for class c at layer l and for feature k:

Lc
GradCAM [l, n] = ReLU(

∑
k

αl,c
k F l

k,n(X,A))

where αl,c
k = 1

N

N∑
n=1

∂yc

∂F l
k,n

are the class specific weights for class c at layer l and for feature k.

In this work, graph heatmaps were produced using Lc
GradCAMAvg[l, n], defined by:

Lc
GradCAMAvg[n] = 1

L

L∑
l=1

Lc
GradCAM [l, n]

3 Results and Discussion

The performance of different graph architectures are summarized in Table 2. Best performing model
for each architecture was found using random hyperparameter search in conjunction with 10-fold
validation. Most GNNs performed reasonably well, as summarized by their Precision, Recall, and
Area Under Receiver Operating Characteristic curve (AUROC). However, all the GNN models
struggled with the decoy set, as indicated by their false positive rates. We have found the most optimal
model to have the following hyperparameters: two graph convolutional via initial residue and identity
mapping (GCNII) layers (SeLU activation function), followed by a mean readout layer, a dense layer
(ReLU activation function), and the output layer with sigmoid activation function. The optimizer was
set to Adam (learning rate = 5× 10−5), the batch size was set to 64, each GCNII layer had a dropout
layer after it (rate = 0.15). The model was trained against binary cross entropy as the loss function.

Table 2: Performance of various graph architectures, as measured by the internal and external AUROC,
and external precision and recall. Also displayed is the FPR on the nonreactive decoy part of the
external test set. The GCNII model discussed in the rest of the paper is highlighted. The full details
of each model are described in the Supporting Information.

Graph
Architecture

Internal
Test

AUROC

External
Test

AUROC

External
Test

Precision

External
Test

Recall
Nonreactive
Decoy FPR Ref.

GCN 0.96 0.84 0.90 0.71 0.49 14
GCNII 0.95 0.84 0.92 0.73 0.37 17
GraphSage 0.95 0.83 0.88 0.80 0.61 18
GAT 0.94 0.84 0.88 0.82 0.57 19
GatedGCN 0.96 0.83 0.90 0.70 0.39 20
GIN 0.97 0.81 0.90 0.72 0.49 21
GT 0.90 0.85 0.92 0.70 0.28 22
GMM 0.97 0.83 0.92 0.68 0.39 23
GATv2 0.93 0.82 0.88 0.76 0.59 24

We then looked at the heatmaps produced by GCNII when applied to known covalent drugs. Figure 1
shows the class activation maps of several known covalent drugs and how they correlate to actual
covalent warheads. We can see that the GCNII model is recognizing covalent warheads as important
to the classification, which agrees with chemical theory and resembles how a medicinal chemist
would assess chemical structures.
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4 Limitations

Figure 1: Selected examples of class activation
maps of known covalent inhibitors. Circled in red
are the actual covalent warheads and highlighted
in green are the class activation maps.

The composition of our training set imposes sig-
nificant limitations on our methods. All datasets
are based on compounds where inhibition ex-
periments have been performed. Several recent
novel covalent warheads employ unprecedented
chemical motifs that are inherently absent from
the training sets. The GCNII model identified
correctly less than half of “atypical” warhead
portion of the test set (Figure 2), which is com-
posed of novel warheads that are not present in
the training set. Other warheads (such as epox-
ides and aziridines) have triangular elements,
which have been shown to be not amenable to
graph convolutional methods [25]. These meth-
ods show limited abilities to identify covalent
inhibitors with unusual warheads or cases there
maybe external factors that affect covalent reac-
tivity (e.g., nonreactive decoys). In short, it has
all the drawbacks of data-driven methods.

It is also important to note that GradCAM ex-
plains the predictions of one model at a time, which itself depends on its architecture and the data it
was trained on. From our own observations, GradCAM performed best (i.e. the class activation map
corresponded to the actual covalent warhead) when classifying a covalent molecule correctly and
with high confidence. Moreover, while GradCAM provides insight into interpretability of the model,
it does not provide information of how model attributes importance.

Figure 2: Performance of the GCNII model on the external test set by category.

5 Conclusion

Machine learning methods for predicting if a molecule is protein reactive were developed. A new
dataset, ProteinReactiveDB, was established and as training data for protein reactivity classification
models. To test the transferability of these models, an external test set was constructed from
compounds that are not present in these sets, as well as a nonreactive decoy test set of compounds that
contain functional groups that can be protein reactive but are not reactive in the chemical context of
that molecule. Despite the limitations of the data and techniques employed, this study demonstrates
the remarkable ability of GNNs to learn to recognize reactive chemical substructures based exclusively
on the classification of compounds as covalent and noncovalent inhibitors. This suggests that the
substantial libraries of covalent and noncovalent inhibitors are an effective training set for machine
perception of electrophilicity. Currently, there are only a modest number of experimental chemical
datasets that have the quality and extent that is suitable for machine learning, so the success of these
models using these data opens new possibilities in chemical reaction prediction.
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6 Data and Code Availability

The ProteinReactiveDB, our test set, and our complete code for both the fingerprint and graph models
are all distributed on our GitHub repository: https://github.com/RowleyGroup/covalent-classifier.

Broader Impact

Drug discovery is considered to be one of the most important and complex applications of chemistry.
The time it can take a potential drug candidate to reach the market can be over decade; even then,
there are known cases of certain drugs being recalled due to unforeseen long-term side effects. The
first phase of drug development - the research phase, heavily relies on careful screening and lab
experimentation of potential drug candidates. The latter is especially difficult due to to the effectivily
infinite chemical space. Current screening filters heavily rely on simple substructure matching,
and are often not effective enough. This work is a step towards better screening tools that would
allow for better screening of promising drug candidates, which would allow to better streamline the
drug discovery process. Finally, protein reactivity is not exclusive to covalent modifier drugs, and
the ability to detect if a compound is protein-reactive it will be beneficial to other areas, such as
toxicology.
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