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Abstract

Rapid strides are currently being made in the field of artificial intelligence using
Large Language Models (LLMs) with Transformers architecture. Aside from some
use of the base technical components of Transformers—the attention mechanism—
the real potential of Transformers in creating artificial intelligence in astronomy
has not yet been explored. Here, we introduce a novel perspective on such model
in data-driven astronomy by proposing a framework for astronomical data that
use the same core techniques and architecture as used by natural-language LLMs.
Using a variety of observations and labels of stars as an example, we build a
prototype of a foundation model and we show that this model can be easily adapted
and trained with cross-survey astronomical data sets. This single model has the
ability to perform both discriminative and generative tasks even though the model
was not trained to do any specific task that we test it on. This demonstrates that
foundation models in astronomy are well within reach and will play a large role in
the analysis of current and future large surveys. The full paper is available at https:
//ui.adsabs.harvard.edu/abs/2024MNRAS.527.1494L/abstract.

1 Introduction

Ever-expanding astronomical data set are being collected by large surveys like Gaia [1] and SDSS
[2, 3] now, and LSST [4] and Euclid [5] in the future, across multiple areas such as spectroscopy,
photometry, and time-domain observations. Data-driven analysis has become increasingly popular
for these large data set. But so far, customized data-driven models are created for every separate task
and data-driven models that focus on cross-survey and/or cross-domain analyses (like the work of
Leung et al. 6) are only trained on the intersection instead of union of the relevant data, due to the
lack of flexibility in model inputs and outputs. Data-driven science using deep neural networks in
particular requires big data to be trained and it would be ideal if we can train such models on most of
the available data to truly create a synergistic understanding of multiple surveys.

Currently, there is ongoing rapid development of Large Language Models (LLMs) like OpenAI’s
GPT [7] that have the ability to do some tasks thought to only be possible with a general intelligence
model [8]. Science communities have been critical of LLMs due to the problem of hallucinations
and because LLMs can easily fail at simple math problems. These issues mean that naively applying
existing LLMs to science is difficult. Moreover, LLMs focus on natural language applications like
chat-bots, which involve completely different kinds of data from the floating point astronomical data.

In this work, we present a novel perspective on the use of Transformers in astronomy by constructing a
model that utilizes the core ideas and technology of natural-language LLMs without involving natural
language. We train a proof-of-concept foundation model that is not trained on specific input/output
pairs for specific supervised and unsupervised tasks, but rather is trained with a big data set to contain
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Figure 1: Structure of our foundation model for stars. The left part of the figure displays the overall
goal of training a big neural network for astronomy that can turn a combination of observations to
useful information. The right part of the figure shows the architecture of the specific model for stars in
this work. The network architecture closely resembles that of a typical Transformer encoder-decoder.
It consists of an encoder, which encodes information from the inputs to context of a star, and a
decoder, which decodes the context of a star based on a request it is given by an agent and outputs
the answer to the question. The inputs to the encoder come from a non-linear embedding of the
astronomical observations that combines the type of observation and its magnitude (see Equation1).

general knowledge of the data set with self-supervised learning. From this perception of the data, one
can later request information from the model. As a proof-of-concept, we specifically build a model
for stars using cross-survey, cross-domain data from APOGEE, Gaia and 2MASS. Our approach
allows us to think about building a big foundation model for astronomy, its potential role in artificial
intelligence, and its application in astronomy [9].

2 Transformer-based Model as Foundation Model

Generally, foundation model refers to a kind of large model trained with vast quantity of data that
can be fine-tuned for downstream tasks, where Transformers give huge flexibility in input and output
node. Such large models significantly outperform smaller models, because in general neural network
capabilities scale well with the number of parameters [10]. The number of parameters is limited by
compute power and the size of the training data. Models like LLMs gain knowledge about natural
languages through a process of pre-training, where the LLM learns to predict, e.g., the next word
when provided with the starts of sentences. Even without a concrete training target, these models are
able to learn structure (e.g., grammar), the meaning of individual words, as well as ideas about our
world.

Building a model that learns general knowledge about scientific areas, such as observations of stars,
would obviously be useful in many scientific applications and we propose here that such models can
be built by adopting the same core technologies and ideas of LLMs, but applying them to tasks that
do not involve natural language. Such model trained with large amount of data can acquire embodied
knowledge of stars in an implicit way. Once trained, we can give a context of an astronomical object
like a list of known parameters or observations and later request for information like unmeasured
parameters about that object.

2.1 Model Implementation

The model has ∼ 8.8 millions trainable parameters with 64 context window length. A high level
overview of the model is given in Figure 1; this mimics a typical Transformer encoder-decoder. Our
model has the basic ability to interact with a user in the decoder which may seem redundant but is
critical to train such model to give flexibility to the output node. The input astronomical data passes
through a similar embedding processing as occurs in natural language processing. Embedding refers
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to learning the vectorization of the input data through training of the model. We have implemented a
custom embedding process that we name “non-linear embedding” and that embeds data of kind x
through

yx = f(wx ·Mx) + wb,x (1)

where yx is the final vectorized data for a particular kind of data x that will be fed into the encoder.
The function f is a typical activation function used in neural networks, wx are the embedding weights,
Mx is the magnitude of the data, and wb,x is a bias weight; all of these are particular to the kind of
data x. Bias weights are necessary, because the neural network will get a vector of zeros for all data
with zero magnitude, so the neural network has no way of knowing which observation that is while
zero magnitude has different meaning for different kinds of data.

The “unit vector” wx in Equation 1 for the non-linear embedding is also used as the request “token”
given to the decoder (shown in Figure 1). We train the decodes such that its output is a scalar value
corresponding to the requested information vector along with predictive uncertainty estimation.
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Figure 2: Our single Transformer-based model can do both “generative” and “discriminative” tasks
in the traditional sense. The top three panels show a scenario where we give Gaia XP spectra for
each star, and we request the prediction for Teff (left), log g (middle) and [M/H] (right) from the
model. The prediction from our model is compared to an external catalog [11] color-coded by our
model uncertainty. The bottom two panels (left: main-sequence; right: red-giants) show the opposite
scenario where we give stellar parameters with varying metallicity to the model and request the
prediction for how should G-band normalized Gaia XP spectra look like. We emphasize that the
model has never been specifically trained to do either of these task (i.e., these specific combinations
of inputs and outputs).
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3 Datasets and Training

For our model, we construct a small, low-dimensional heterogeneous data set that is perfect for fast
proof-of-concept prototyping. We choose Gaia DR3 photometry and XP spectra [12, 13], 2MASS
photometry [14], interstellar extinction map [15], APOGEE DR17 [16] stellar properties for 396, 718
stars with majority of them being sub-giants and red giants.

Gaia XP spectra are low-resolution optical to near-infrared (R ∼ 30 to 100, 330 to 1050 nm; Carrasco
et al. 17) spectra obtained from Blue and Red Photometers (BP/RP) aboard the Gaia spacecraft.
Unlike usual stellar spectra, Gaia XP spectra were released as 110 coefficients of an orthogonal basis
function expansion, where lower-order coefficients explain large-scale features of the spectra (hence
more information like Teff ) and higher-order coefficients explain small-scale features including the
noise. We simply treat each coefficient as a kind of data. We normalize the XP coefficients by the
Gaia G-band apparent flux.

In the data set, each star has a row of available observations in which missing data (represented by
NaN) are replaced by a special padding token (the same idea used to mask empty spaces in sentences),
which is masked automatically in the model. In order to train the model without a clear learning
objective, we pick a random set of data for each star as input and a random one as output which may
or may not be included in the input already even for stars in the same batch during training. This
is enabled by the ability to interact with the decoder, because we do not have a fixed output target
during training. This way of training is similar to LLM pre-training, where the goal is to predict the
next words given the starting part of sentences. But here we do not care about the relative ordering of
the input data, but simply with learning the general relationship.

4 Results

To illustrate the general capabilities that our trained model with all neurons always participating, we
present the result of both a discriminative task and a generative task. Both of these tasks have been
investigated by others: e.g., discriminative learning using tree-based machine learning methods [18]
and generative modelling using a feed-forward neural network [19]. Our model performs similarly
well compared to these previous methods but with a single model.

Our model has never been specifically trained to predict the requested labels from the specific set
of inputs that we test. The result is shown in Figure 2. By comparing to external catalog like
[11], our model predict stellar labels at a similar accuracy compared to works like [20, 19] while
having reasonable uncertainty estimation. Our model also have a generative capability that can show
what spectral features vary with metallicity. To the best of our knowledge, this is the first model
in astronomy that can accomplish both discrimiative and generative task in a single model (i.e., all
weights of the model are used for predictions in both tasks). Models like conditional autoencoders
can do both tasks, but only the encoder participates in the discriminative task and only the decoder in
the generative task.

5 Conclusion

We have introduced a novel framework of utilizing a Transformer-based model towards building a
foundation model in astronomy which we hope will accelerate the development such model in the
future (a review of neural networks and the role of foundation model in astronomy can be found in
Smith and Geach 9). Our model adopts and adapts technology from natural-language LLMs to inherit
their advantages (and disadvantages).

We have demonstrated this idea and how it can allow training general astronomy models on big
cross-survey, multi-domain astronomical data sets with missing data due to different footprint of
survey, etc. This opens up new avenues for training Transformer-based foundation models in the
future. Transformer-based models not only provide a way to utilize the advantages of LLMs, but also
provide an opportunity for astronomers to build, train, and incorporate our domain expertise in the
model. For example, our past experiences of machine learning on a wide range of astronomical data
will be crucial in the construction of foundation model(s).
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