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Abstract

We introduce Lensformer, a state-of-the-art transformer architecture that incorpo-
rates the lens equations directly into the architecture for the purpose of studying
dark matter in the context of strong gravitational lensing. This architecture com-
bines the strengths of Transformer models from natural language processing with
the analytical rigor of Physics-Informed Neural Networks (PINNs). By putting
the lensing equation into the design of the architecture, Lensformer is able to
approximate the gravitational potential of the lensing galaxy. The physics-based
features are then integrated into a Vision Transformer (ViT) neural network, which
helps to provide a nuanced understanding when applied to various problems related
to strong lensing. In this work, we consider an example of classifying between sim-
ulations of different models of dark matter. To validate the model, we benchmark
Lensformer against other leading architectures and demonstrate that it exhibits
superior performance.

1 Introduction

Despite being studied for over a century, it feels as if we are not much closer to knowing the
underlying microphysical description of dark matter than we were at the time of its discovery. Indeed,
countless experimental programs have embarked on searches for promising dark matter candidates,
but to date, all efforts have come up empty [1, 2, 3, 4, 5, 6]. Another avenue to constrain and
understand dark matter, beyond leveraging its (possible) couplings to the Standard Model, is to study
its gravitational imprints. Indeed, a rampant area of research has been the application of data from
strong galaxy-galaxy lensing images to study and constrain dark matter. This is a promising avenue
to constrain dark matter since the extended lensing phenomenon is very sensitive to perturbations
induced in the lensing potential due to the presence of substructure in the main halo, see for example
[7, 8, 9, 10, 11, 12, 13]. Characteristic differences in the distribution and morphology of dark matter
substructure can then be leveraged to potentially identify different models. This is, of course, easier
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said than done. The inherent complexity makes extracting information about the sub-dominant
lensing signal tricky.

Precisely because of the difficulties associated with using lensing data, machine learning algorithms
have been studied extensively in this context. However, currently, there is only a small sample of
high-quality lensing data available for training, but thankfully next-generation experiments such as
the Vera Rubin Observatory (VRO) [14] and Euclid [15] are expected to provide thousands of images,
heightening the need for refined analytical methods. However, in the meantime, simulations have
become crucial in studying the interface of machine learning and strong lensing. Indeed, many studies
have shown that machine learning is likely to be a powerful method to extract information about
dark matter from lensing data, see for example [16, 17, 18, 19, 20]. In particular, these studies have
consistently shown that convolutional neural networks (CNN) are ideally suited for strong lensing.
This result isn’t surprising since a CNN has two important features: 1) it leverages correlations in the
image data and 2) it exhibits translation invariance. The major benefit here is that the CNN is able
to integrate out irrelevant (i.e. redundant) “degrees of freedom” for free – precisely because CNNs
are translationally invariant by construction. Indeed, building known redundancies in a given data
set into an architecture by hand is known to increase model performance; in the context of lensing
this has been demonstrated with equivariant neural networks in the context of domain adaptation for
simulated strong lensing data [21].

At its heart, the success of CNNs and equivariant neural networks can be attributed to their ability to
instill known structure from the data directly into the architecture. Along this same line of thought, it
has recently been shown that one can also instill physical laws directly into one’s architecture [22] to
solve challenging problems; these are so-called physics-informed neural networks. In this context,
we now introduce Lensformer, a neural network model inspired by the Vision Transformer (ViT)
architecture [23] and with the lensing equation directly embedded into the architecture’s structure.
To demonstrate Lensformer’s superior performance, we benchmark it against other state-of-the-art
architecture by classifying between mock Hubble observations of galaxy-galaxy strong lensing for
different realizations of dark matter.

2 Dataset

To test our proposed architecture, we make simulations of galaxy-galaxy strong lensing data, which
are meant to resemble data from observations with an HST-like survey. Our data sets are constructed
with the publicly available code lenstronomy[24] where we make images sized 64 × 64 which
are single channel. For modeling background galaxies, which we will lens, we implement a Sersic
light profile. For our dark matter models, we have generated three different classes. The first class
realizes the standard cold dark matter (CDM) scenario where the main dark matter halo, which
is modeled with a spherical isothermal profile, contains subhalos drawn from a standard subhalo
mass distribution (see [16] for further details). For our second model, we instead model the lensing
signature of very light axion dark matter. Concretely, the axion simulations in this work correspond
to dark matter with a particle mass ∼ 10−23 eV. In this range, the formation of substructure is highly
suppressed, and the primary substructure observable comes from topological defects in the halo in
the form of vortices [16]. As a final model for dark matter, we construct a realization of dark matter
which contains no substructure. While not a realistic model, data clearly rule this out, this data set is
useful since we are working in the realm of simulations as it serves as a useful scenario to compare to
the other substructure classes. Our work generates a total of 400 simulations, split evenly between
training and testing and between our three types of dark matter.

3 Lensformer Architecture

Extracting information about dark matter, via its substructure, from strong lensing images is a very
high-dimensional problem. To help reduce this problem, we propose the Lensformer architecture as
a novel approach to the study of dark matter from strong lensing data. Specifically, our architecture
leverages two things: 1) a transformer architecture and 2) Lensformer directly incorporates the
physics of strong lensing into the architecture through the lens equation. By endowing the
architecture with the basic governing equation of gravitational lensing, the hope is that it will reduce
the complexity (dimensionality) of the problem that has to be solved by the architecture. This is
achieved through a two-pronged approach consisting of a specialized encoder and decoder.
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Figure 1: Lensformer Architecture.

3.1 Relativistic Physics-Informed Encoder

As mentioned earlier, the encoder leverages the governing equation of strong lensing. That is, it
employs the lens equation (see [25] for more details) where we have additionally included the analytic
form of the potential for a spherical isothermal profile as an ansatz [26]. The intent of this is to
use this ansatz as a first-order approximation to the potential of the dark matter halo. This extra
information can then be leveraged to reconstruct the source galaxy that is being lensed, but also
enhance model performance.

In the Inverse Lens Layer, see Fig. 1, we use the lens equation, in its dimensionless form, which
is given by the following relation: S⃗ = I⃗ − ∇⃗Ψ(I⃗)[27]. In this equation, S⃗ = (xs, ys) represents
the dimensionless source vector position in the source plane, which corresponds to the position
of the source galaxy. On the other hand, I⃗ = (xi, yi) represents the dimensionless image vector
position in the image plane, which corresponds to the image we observe. Finally, ∇⃗Ψ(I⃗) =(
Ψx(xi, yi),Ψy(xi, yi)

)
represents the gradient of the dimensionless gravitational potential produced

by the lens, which in our case, includes both the lensing galaxy and the possible dark matter.

This equation involves three unknowns: the source position S⃗, the image position I⃗, and the
gravitational potential of the system Ψ(xi, yi). Yet, we only have knowledge of the produced image
I⃗. To estimate the position of the source galaxy S⃗ , we need to make assumptions about the potential
of the system (i.e., the lensing galaxy plus dark matter). Here, we adopted the following ansatz:

Ψ(xi, yi) = k(xi, yi) ·ΨSIS(xi, yi) (1)

Where ΨSIS(xi, yi) is the potential of the Singular Isothermal Spherical (SIS) profile [26] and, then,
ΨSIS(xi, yi) =

√
x2
i + y2i [28]; and the function k(xi, yi) is a learnable function from the data.

To predict the values of k(xi, yi), we use the image of the lensed source galaxy and employ the
architecture of a ViTSD (Vision Transformer for Small Datasets)[29]. This is done in conjunction
with image transformations specifically designed to detect minute variations in the image gradient,
potentially attributable to the presence of dark matter. We predict a corresponding kij value for each
pixel (i, j), as is shown in Figure 1, in the encoder.

With the obtained values kij , we can estimate the potential Ψ(xi, yi). Alongside the input image, this
enables us to solve the gravitational lens equation and generate an estimated image of the source
galaxy. This image then undergoes Shifted Patch Tokenization (SPT)[29] and serves as the query
input for the decoder’s transformer blocks, while the original image transformations enter the decoder
as the key input.
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Table 1: Performance Metrics of Different Models

Model Name Accuracy AUC F1 Score

No Subs. CDM Axion

Resnet 0.511 0.690 0.564 0.375 0.596
Inception 0.404 0.583 0.435 0.331 0.453
CvT 0.637 0.812 0.677 0.444 0.755
ViT 0.573 0.740 0.608 0.485 0.652
CaiT 0.556 0.745 0.642 0.376 0.642
ViTSD 0.729 0.873 0.780 0.609 0.799
Lensformer 0.903 0.966 0.916 0.936 0.857

3.2 Decoder

For the decoder part of the architecture, Lensformer adopts techniques like Shifted Patch Tok-
enization (SPT)[29] and Locality Self-Attention (LSA)[29]. By using the original lensed image as
the query with the image transformation as the key, the decoder can generate more accurate and
physics-consistent representations of lensing phenomena. These techniques not only improve the
model’s effectiveness but also increase its adaptability to different types of data.

4 Experiment

To rigorously assess the effectiveness of Lensformer, a benchmarking study was conducted against
other top vision transformer models using the created dataset and NVIDIA A100 GPUs. All models
were standardized to have around 11 million parameters and were trained for 300 epochs with an
initial learning rate of 10−3. The AdamW [30] optimization algorithm was used, and a dynamic
learning rate adjustment strategy was employed, reducing the learning rate by half if no performance
improvement was observed over 10 consecutive epochs. Performance was evaluated using a Cross-
Entropy-based loss function, a standard metric for classification tasks. The roster of models selected
for this study is diverse, including Vision Transformer (ViT)[23]; Vision Transformers for Small
Datasets (ViTSD)[29]; Convolutional Transformer (CvT)[31]; Class-Attention in Image Transformers
(CaiT)[32]; Residual Networks (ResNet)[33]; and Inception[34].

5 Results and Discussion

In a comprehensive evaluation using the created dataset, Lensformer outperformed other state-of-
the-art models in key metrics for the toy example of classifying between strong lensing simulations
with different underlying dark matter physics, i.e. ΛCDM, ultra-light axions, and no substructure
classes. We have compiled the accuracy, AUC, and F1 score for these studies in Table 1. Furthermore,
we show the evolution of the test set accuracy and training loss together with ROC curves in Fig. 2.
With an accuracy of 90.3%, a ROC-AUC score of 0.966, and F1 scores of 0.916, 0.936, and 0.857
for the no substructure, CDM, and ultra-light axion classes, respectively, Lensformer demonstrates
significantly better performance than both transformer-based and CNN-based models. The second-
best performer on the data set was ViTSD which had a significantly degraded performance by
comparison with an accuracy of 72.9% and ROC-AUC score of 0.873.

The superior performance of Lensformer suggests that the model’s physics-informed architecture is
able to appreciably decrease the dimensionality of the effective task it is asked to solve. While this
will require more testing to fully understand, this increase in performance can likely be compared
to the successes seen with applications of both CNNs and equivariant neural networks that improve
model performance precisely because they are better structured for the problem at hand. Indeed, this
is particularly useful when handling sparse or limited datasets, suggesting that tools like Lensformer
could be useful for other specialized tasks in cosmology and astrophysics in which some previous
domain knowledge can be leveraged to increase model performance.
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Figure 2: Model Performance Metrics. The left panel shows test accuracy, the middle panel shows
training loss, and the right panel displays the Micro-Averaged ROC-AUC curves for various models.
A gray ‘Random Guess’ line provides a baseline on the ROC-AUC plot.
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