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Abstract

Human visual classification is the traditional approach to identifying jellyfish
galaxies. However, this approach is unsuitable for large-scale galaxy surveys. In
this study, we employ self-supervised learning on a dataset of approximately 200
images to extract semantically meaningful representations of galaxies. Despite
the small dataset size, a similarity search suggests that the self-supervised rep-
resentation space contains meaningful morphological information. We propose
a framework for assigning JClass, a categorical disturbance measure, based on
nearest-neighbor search in the self-supervised representation space to assist visual
classifiers. Our pipeline is highly adaptable, allowing for the seamless identification
of any rare astronomical signatures within astronomical datasets.

1 Introduction

Jellyfish galaxies are galaxies with disturbed morphologies; however, they are rare to spot [1, 4, 12, 16].
Traditionally, they have been identified only by visual inspection. A prevalent method for assessing
the disturbance in morphologies of galaxies is to designate a JClass. This classification system
ranges from 0 to 5, with 5 representing the most robust evidence of disturbance and 0 indicating the
weakest. A distinct visual characteristic of these galaxies is the presence of elongated jellyfish-like
tails extending in a preferred direction. However, such visual classification is time-consuming, and
measuring the disturbance accurately based solely on visual analysis is difficult.
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Self-supervised learning (hereafter, SSL) has proven promising in recent years for learning gener-
alized, semantically meaningful data representations. Its applications in astronomy are becoming
popular. [6] demonstrated the superiority of SSL over supervised learning methods applied to
multiband galaxy images from the Sloan Digital Sky Survey (SDSS), [13] showcased the improved
robustness of SSL representations to non-physical properties compared to Principal Component
Analysis (PCA), [14] developed an online web-based tool for fast similarity search. An application
towards finding the rare strongly gravitationally lensed galaxies was demonstrated in [15].

Due to the limitations of traditional supervised learning methods in such settings (scarcity of data:
∼200 images, severe imbalance of classes), we leverage the end-to-end SimCLR contrastive learning
framework to extract robust representations of galaxies. Typically, these representations form the basis
for several downstream tasks, such as classification or similarity search. We introduce a downstream
task of predicting the JClass of galaxies using the extracted self-supervised representations to aid the
uncertain and laborious visual classification. To this end, we propose a simple framework that uses
information from confident visual classifications to predict the JClass of any given galaxy by using
the JClass of its n-nearest neighbors in the self-supervised representation space.

2 Methods

2.1 Data

Our dataset consists of ∼200 images from three nearby galaxy clusters (Fornax, Antlia, and Hydra) ob-
tained in 12 bands (each band allowing a specific range of wavelengths) of the Southern-Photometric
Local Universe Survey [10]. The dataset constitutes a main sample displaying emissions thought to
be associated with jellyfish galaxies and a control sample, which did not display such emissions.

The classification was carried out in an internal project on the Zooniverse platform1. Given a galaxy,
six visual classifiers checked for visual disturbance and assigned a JClass. Galaxies with merger
evidence, i.e., two or more galaxies in interaction, were flagged. The final JClass was the median
across all JClasses, excluding merger cases. This process yielded 51 candidate jellyfish galaxies
across all three clusters, with a JClass distribution ranging from 4 to 1 – there are no instances
of JClass 5 galaxies in our data. Since our primary aim is to improve visual JClasses without
entirely relying on the visual JClasses, we focus only on galaxies with high uncertainty in the JClass
among the visual classifiers (see Sect. 3.3). The extremely small size of our dataset is used to test
whether (a) SSL can learn meaningful representations of galaxies and (b) SSL representations encode
important features for downstream tasks such as classification, which was previously unexplored in
an astronomical context for small data.

2.2 Architecture and training

We use a shallower Resnet-34 as our encoder in SimCLR instead of Resnet-50 to alleviate over-
fitting in our small data set. Its architecture is modified to accept our 12-channel images. The
projection head is widened by using four times more neurons in the projection head [3]. The stride
in convolutions is reduced from 2 to 1 in the first convolutional layer, and the amount of pooling
is reduced by removing the first max pooling layer ([6], [11]). This results in a 512-dimensional
representation vector for each galaxy. The representations used in this study are the outputs of the
encoder instead of the projection head since such a setting is more beneficial for downstream analyses
[2].

Before training, background sources from the images are removed to ensure the learning is not biased
due to nearby sources. We have used the galmask package [5] for this purpose, and is applied
independently on each band. An extensive set of augmentations are used during training to make
the representations invariant to changes in noise, orientation, and the Point Spread Function (PSF).
In addition to the usual random cropping and rotation augmentations, we randomly apply a custom
color jitter (with 0.8 probability) to each image channel, following [7]. For invariance to PSF, we
convolve the images with a 9× 9 Gaussian kernel with standard deviation uniformly sampled in the
range [0.1, 2.0].

1https://www.zooniverse.org/
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The contrastive loss function (also called the NT-Xent loss function) is defined as li,j =

− log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp (sim(zi, zk)/τ)
where (x̃i, x̃j) denotes a “positive" pair (i.e., augmented

versions of the image x), τ is the temperature hyperparameter, the indicator function 1[k ̸=i] ∈ {0, 1}
evaluates to 1 if and only if k ̸= i, sim(p, q) =

p · q
∥p∥∥q∥

. During training, x̃i and x̃j are passed

through the network (consisting of an encoder and a non-linear projection head). The above con-
trastive loss is applied to the projection head’s output.

Training is performed using the contrastive loss function for 1000 epochs, optimized using the
Adam with decoupled weight decay (AdamW; [9]) optimizer with a weight decay of 10−4 and a
learning rate, lr = 10−4. The learning rate is manipulated using a cosine annealing schedule with the
minimum learning rate set to lr/50 and without restarts [8], and the maximum number of epochs
set to 1000. We set τ = 0.05. All hyperparameters are tuned using K-Fold cross-validation using a
combination of contrastive loss and top-5 accuracy (the number of times the desired patch is within
the top 5 most similar examples to the original image in the sampled batch). For computational
reasons, K = 3 is used instead of the common choices of K = 5, 10. Large batch sizes are known to
improve SSL performance [2]. We thus use a batch size of 128, which is the maximum batch size
feasible for our application, given our RAM limitations.

Figure 1: A few query-by-example searches using SSL. Images marked with a red border are the
query images. The four closest images to the query image are shown from left to right, in decreasing
order of similarity. The JClass and the cosine similarity values are shown on each image. For better
clarity, we show the original images and not the ones after applying galmask.

The learned encoder is used to yield representations of galaxies from the test set. To highlight the
robustness of SSL to the location in the sky and related systematics, we show results by training on
galaxies from the Antlia and Hydra galaxy clusters and testing on images from the Fornax cluster.

3 Results

3.1 Representation quality evaluation

We use the linear evaluation protocol for quantifying self-supervised representation quality, in which
we train a supervised logistic regression classifier on top of the features extracted from the encoder.
The encoder is used as a fixed feature extractor. We compare it with standard supervised learning
CNN. For this section, we consider binary labels (0: non-jellyfish, 1: jellyfish), which means no
distinctions are made between different jellyfish strengths (JClass 1 to 4). This choice prevents the
class imbalance issue from aggravating since high disturbance cases (JClass 3, 4) are extremely
rare. Class imbalance is handled by using a weighted random sampler during training of the logistic
regression and the supervised CNN.

The precision, recall, and accuracy on the test set for the supervised CNN and the logistic regression
trained on the self-supervised representations are (72.3, 79.3), (78.8, 84.2), and (86.3, 87.95). Thus,
the linear evaluation protocol outperforms traditional supervised learning. We also found that the
supervised approach is susceptible to class imbalance, alleviated by the linear evaluation protocol
since the self-supervised representations extracted are label-agnostic.
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Figure 2: Workflow of our proposed approach, which conducts a similarity search and assigns a JClass
to the query galaxy based on the JClasses of similar galaxies in the self-supervised representation
space.

3.2 Query by example

We conduct a query by example (or similarity search) to inspect what types of galaxies are clustered
closely in the self-supervised representation space. Based on cosine similarity, the top four closest
images to a chosen query image are selected and shown in Fig. 1. The top row shows two cases where
all closest images to the query image (with JClass 0) also have a JClass 0. The bottom row shows
query galaxies with extreme disturbance (JClass 4 and 3) that have a mix of non-jellyfish (JClass 0)
and jellyfish (JClass ̸= 0) galaxies as the closest galaxies in the self-supervised space. This could
happen since galaxies have many features (including or excluding the ones that distinguish jellyfish
from non-jellyfish) mapped onto the same self-supervised space. Overall, it can be observed that
galaxies similar in color and shape to the respective query images are present in the similarity search,
thus suggesting that galaxies with similar features are clustered closely in the representation space.

3.3 Re-calibrating visual classifications

Since the JClass assigned by visual inspection is based on a subjective assessment of jellyfish-ness,
a linear evaluation protocol (see Sect. 3.1) that uses these JClasses as ground-truth labels will be
affected by the quality of these labels. The linear evaluation will not yield a precise disturbance
strength estimate, either, since it is only a binary classification (jellyfish vs. non-jellyfish). As stated
above, a multi-label classification will degrade due to the increased severity of the class imbalance.
Thus, a supervised regressor trained on self-supervised representations is not ideal for improving
JClass. To mitigate these issues, we develop a new downstream task to assign JClass to galaxies
leveraging self-supervised representations to assist visual classifiers in their classification.

For N visual classifiers trying to assign a JClass to a given galaxy, we consider the galaxy uncertain
for visual classification if there are > ⌈N/2⌉ unique visually-assigned JClasses (where ⌈ ⌉ is the
ceiling function). We assign a JClass for a given galaxy using the JClasses from its nearby galaxies
in the self-supervised representation space. Therefore, we define the following rule: JClassss =∑n

i=1 si JClassvi∑n
i=1 si

where si is the cosine similarity between the query image and the ith similar image

to it, n is the number of closest images considered, and JClassss and JClassv are the self-supervised-
predicted and visual JClasses respectively. We use n = 4. In our framework, we ensure that the
nearby galaxies are not uncertain to classify visually, i.e., have ≤ ⌈N/2⌉ unique visual JClasses.

Fig. 2 illustrates our framework to assign JClass to galaxies based on the similarity search on the
representations of galaxies. Although our proposed approach uses visual JClasses for the final
prediction, we note that it does not use these JClasses to learn to distinguish between jellyfish and
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Figure 3: Three examples demonstrating the application of our framework. Galaxies to which a
JClass is assigned using our approach (i.e., query galaxies) are outlined in red. Similar to Fig. 1, the
corresponding similar images are shown. The visual JClass is denoted at the top-right of the images,
and the JClass assigned to the query is also shown.

non-jellyfish due to the self-supervised nature of the training process, unlike supervised CNNs or
supervised regressors trained on the representations.

Fig. 3 shows the application of our framework. We show three cases where the self-supervised JClass
was smaller, equal, and higher (top to bottom, in that order) than the corresponding visual JClass.
In the top row, the visual classification predicted the query galaxy to be a JClass 2. However, since
the query image resembles galaxies with a visual JClass 0, our framework predicts it as a JClass 0
galaxy. The middle row shows an agreement between visual and self-supervised JClass assignments.
All the most similar galaxies to the query have a JClass 0. Thus, the query image is assigned a JClass
0. In the bottom case, the most similar images had a stronger disturbance signature, resulting in the
self-supervised approach assigning a higher JClass of 2 instead of the visual JClass 1. Here, while the
self-supervised approach predicted a higher JClass for the query image, it was identified as a merger
by visual classification. Hence, the self-supervised model might not clearly distinguish jellyfish from
merger galaxies.

4 Conclusion

A similarity search using SSL revealed that the learned representations of our galaxies are robust to
orientation and noise, which is promising considering the paucity of data. After human classification,
our framework of predicting disturbance strengths of galaxies using SSL can improve the JClasses
of uncertain galaxies without needing manual follow-up analysis, thus improving classification
speed. SSL also alleviates human biases, so SSL predictions are expected to produce more reliable
disturbance strengths. Hence, our framework can also be used as a guide to train human classifiers to
assist in their visual classification. Another application is identifying false positives and negatives
during follow-up analysis after human classification. Our work demonstrates the application of SSL
in the low-data regime. With large astronomical datasets, more powerful semantic embeddings are
expected to be obtained, thus improving the performance even further.

An extension of this work is to identify and disentangle features or learn a similarity metric (instead
of fixing it to cosine similarity) that helps distinguish jellyfish from non-jellyfish galaxies, which
could help differentiate between jellyfish and merger galaxies.
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for strong gravitational lenses with self-supervised learning. The Astrophysical Journal, 932
(2):107, jun 2022. doi: 10.3847/1538-4357/ac6d63. URL https://dx.doi.org/10.3847/
1538-4357/ac6d63.

[16] Elad Zinger, Gandhali Joshi, Annalisa Pillepich, Eric Rohr, and Dylan Nelson. Jellyfish
galaxies with the IllustrisTNG simulations – Citizen-science results towards large distances,
low-mass hosts, and high redshifts. arXiv e-prints, art. arXiv:2304.09202, April 2023. doi:
10.48550/arXiv.2304.09202.

7

https://dx.doi.org/10.3847/1538-4357/ac1dac
https://dx.doi.org/10.3847/1538-4357/ac1dac
https://dx.doi.org/10.3847/1538-4357/ac6d63
https://dx.doi.org/10.3847/1538-4357/ac6d63

	Introduction
	Methods
	Data
	Architecture and training

	Results
	Representation quality evaluation
	Query by example
	Re-calibrating visual classifications

	Conclusion

