
deep-REMAP: Parameterization of Stellar Spectra
Using Regularized Multi-Task Learning

Sankalp Gilda∗

Machine Learning Collective
sankalp.gilda@gmail.com

Abstract

Traditional spectral analysis methods are increasingly challenged by the ex-
ploding volumes of data produced by contemporary astronomical surveys. In
response, we develop deep-Regularized Ensemble-based Multi-task Learning
with Asymmetric Loss for Probabilistic Inference (rmdeep−REMAP ), a
novel framework that utilizes the rich synthetic spectra from the PHOENIX
library and observational data from the MARVELS survey to accurately
predict stellar atmospheric parameters. By harnessing advanced machine
learning techniques, including multi-task learning and an innovative asym-
metric loss function, deep− REMAP demonstrates superior predictive capa-
bilities in determining effective temperature, surface gravity, and metallicity
from observed spectra. Our results reveal the framework’s effectiveness in
extending to other stellar libraries and properties, paving the way for more
sophisticated and automated techniques in stellar characterization.

1 Introduction

Advancements in computers, telescope designs, and funding have revolutionized astronomy,
leading to expanded survey volumes and resolution [1, 2]. These developments have enabled
surveys like SDSS, SEGUE [3], RAVE [4], BOSS [5], and LAMOST [6] to collect spectra for
millions of stars, creating a data-rich environment for cutting-edge research. Complementing
this, the PHOENIX library has provided a comprehensive set of synthetic spectra, essen-
tial for developing and testing new spectral analysis techniques. The latest data releases
from Gaia-ESO Survey [7], DESI [8], and LSST [9] are set to further expand this corpus,
highlighting the necessity for advanced computational methods capable of handling such
vast and complex datasets. The increasingly prominent role of Machine Learning (ML),
particularly Deep Learning (DL), in processing and analyzing these data reflects this need,
with techniques such as convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) proving effective for tasks like star-galaxy classification [10] and strong gravitational
lensing identification [11].

Traditional spectral analysis methods, though successful in the past, now face significant
challenges due to the surge in data volume and the diversity of spectral resolutions provided
by these surveys. High-resolution techniques like the Equivalent Widths (EW) Method
[12, 13] are less suited for the moderate-resolution spectra that are now increasingly common.
Spectral synthesis, an alternative, has shortcomings including dependency on atomic line
databases [14].

Recent years have seen the development of ML algorithms for stellar parameterization, from
multi-layer perceptrons [15–17] to convolutional neural networks (CNNs) like “The Cannon”
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Figure 1: Schematic representation of the deep− REMAP neural network architecture
highlighting the input layer, convolutional layers, pooling layers, dense layers, and the two
heads for of the three stellar parameters.

[18], “The Payne” [19], and “StarNet” [20]. However, these works either use simple networks,
require significant labelled data, or lack generalization to out-of-sample distributions. Our
proposed framework, deep− REMAP (see Figure 1), is designed to leverage the synergy
between the synthetic spectra from the PHOENIX library and the observational data from
the MARVELS survey. It addresses these contemporary challenges by employing a multi-task
learning approach, enabling the simultaneous prediction of multiple atmospheric parameters.
We apply it to MARVELS survey spectra [21], validate it on stars with known parameters,
and extract stellar atmospheric parameters for 732 FGK giant star candidates.

deep− REMAP’s architecture, which integrates recent advancements in regularization and
loss function design, is particularly well-suited to the complex task of extracting stellar
characteristics from the vast and varied data produced by today’s spectroscopic surveys.

2 Data and Pre-Processing

2.1 MARVELS Spectra

We leverage the rich dataset from SDSS-III’s Multi-object APO Radial Velocity Exoplanet
Large-area Survey (MARVELS), featuring spectra collected from 5,500 stars using a medium-
resolution spectrograph at Apache Point Observatory [21–23]. Prior analyses have scrutinized
the UF2D and UF1D data processing pipelines [24], along with the meticulous target selection
process [25].

Expanding upon the spectral indices method [14], [26] refined the derivation of stellar
parameters for all observed stars. Following quality control and uniqueness checks, as well as
parameter filtering, we narrowed the dataset down to 2,343 dwarfs, whose stellar parameters
have subsequently been used for the fine-tuning of our network. The validation process
involved 30 calibration stars, and the network was also tasked with predicting parameters
for the remaining 732 giant and sub-giant stars (Nolan Grieves, private communication).

The pre-processing of MARVELS spectra entailed meticulous normalization, continuum
removal, and a novel approach to cosmic ray mitigation. These steps were critical in ensuring
the quality of the dataset, which is paramount when employing deep learning models for
spectral analysis. The curated dataset enables the deep− REMAP framework to effectively
learn the intricate patterns and nuances within the spectra, facilitating a more accurate
prediction of stellar atmospheric parameters.
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2.2 PHOENIX Spectra

The PHOENIX library offers an extensive collection of high-resolution synthetic spectra,
pivotal for the calibration and benchmarking of spectral analysis algorithms. Utilizing the
state-of-the-art synthetic modeling techniques, the library provides coverage over a wide range
of stellar parameters, making it an indispensable resource for this study. For the purposes
of deep− REMAP, we selected a subset of the PHOENIX spectra that closely matches the
parameter space of the MARVELS survey to ensure a consistent and comprehensive training
regimen for our model. Since MARVELS stars are expected to be F,G and K type stars, we
limit the PHOENIX stellar parameter to: 4,850 ≤ λ ≤ 5,750 Å, 3,000 ≤ Teff ≤ 7,000 K, 1.0
≤ log g ≤ 5.5, -2 ≤ [Fe/H] ≤ 1. Below, we describe how the synthetic PHOENIX spectra
are brought in line with MARVELS spectra to reduce the discrepancies between them, thus
allowing for successful transfer learning.

Incorporating these synthetic spectra allows for the fine-tuning of deep− REMAP’s predictive
capabilities, providing the network with robust training data that encapsulates the theoretical
variance across different stellar atmospheres. This integration is particularly beneficial for
the recognition of subtle spectral features that may not be as prominent in observational
data, thereby enhancing the model’s generalizability and accuracy in parameter estimation.

2.3 Pre-processing and Data Augmentation

Synthetic spectra often require calibration to align with observed spectra, a process termed
traversing the synthetic gap. To utilize the PHOENIX synthetic grid for the MARVELS
spectra, we perform several pre-processing and data augmentation steps:

1. Down-convolution: PHOENIX spectra are convolved with Gaussian kernels to lower
resolution, accommodating resolution variation in the MARVELS spectra.

2. Resampling: PHOENIX spectra are resampled onto the MARVELS wavelength grid
via cubic spline interpolation.

3. Noise Addition: Gaussian noise is added to PHOENIX spectra, reflecting the
Signal-to-Noise (SNR) distribution in MARVELS spectra.

4. Continuum Normalization: Continuum is removed from both datasets using a
uniform method, ensuring consistency.

Steps 1 and 3 also serve as data augmentation, enhancing the training set size and model
robustness. For step 4, we develop a novel continuum normalization routine (see Algorithm
1), superior to existing methods in tests on synthetic spectra. In future we plan to compare
this with advanced algorithms in literature [27–29].

MARVELS spectra required careful pre-processing to accurately estimate their continuum
levels, which included removal of false features [24, 26], and application of the continuum
finding routine. Despite varying SNRs in the MARVELS spectra, our method effectively
managed potential misestimations. Concluding these steps, we have 100,000 processed
PHOENIX spectra, and 3,075 processed MARVELS spectra.

3 Implementation

We design the deep− REMAP architecture to accurately predict stellar parameters by
discretizing the continuous spectral labels into discrete classes. We demonstrate this using
the effective temperature (Teff) – we divide the range into bins and model these bins
using Gaussian distributions, which reflects the measurement uncertainties inherent in Teff

estimates and is expressed by the equation:

p(Teff |x) =
1√
2πσ2

exp

(
− (Teff − µ)2

2σ2

)
, (1)

where x is the input spectrum, Teff is the effective temperature, µ is the mean value for the
bin, and σ is the standard deviation.
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We apply asymmetric label smoothing, a recent advancement in training classification models,
to mitigate the impact of these uncertainties, thereby forming a cost vector that guides the
neural network towards more reliable predictions. We introduce triplet loss to our training
process, a significant improvement over traditional loss functions. This loss function helps in
embedding the parameters in a space that enhances the model’s predictive accuracy by:

Ltriplet = max (d(a, p)− d(a, n) + margin, 0) , (2)

where d(·) denotes a distance metric, a is an anchor input, p is a positive input of the same
class as the anchor, and n is a negative input of a different class.

Our final loss function, Lfinal, combines cross-entropy loss and triplet loss to balance classifi-
cation accuracy with embedding effectiveness:

Lfinal = LTeff ,softmax + λTeff
LTeff ,triplet (3)

+ Llog g,softmax + λlog gLlog g,triplet

+ L[Fe/H],softmax + λ[Fe/H]L[Fe/H],triplet

with λs being weights that balance the two loss components. See Fig. 2) for the results on
the validation set. The three λs are empirically chosen to be 0.001.

The learning rates for the fine-tuning phase undergo a gradual reduction, thus preserving
the knowledge in the shallower layers while facilitating faster modifications in the deeper
layers. The number of epochs per cycle and the number of cycles are determined empirically.
The weights of the model are set to the running average of the weights recorded at the end
of each cycle, a technique known as Stochastic Weight Averaging (SWA). Lastly, the model’s
performance is evaluated on the stellar parameters of 30 calibration stars from MARVELS.

We determine the optimal model complexity through an exhaustive 10-fold cross-validation,
selecting the appropriate number of residual blocks and filters to minimize Lfinal. This
minimization ensures that our model generalizes well and remains robust against overfitting.
Through this strategic implementation, we position deep− REMAP at the forefront of modern
machine learning applications in spectral analysis, showcasing its prowess in automated
stellar parameter inference.

4 Results

We applied the deep− REMAP framework to analyze a cohort of 732 FGK giant star
candidates, extracting three key parameters: Teff, [Fe/H], and log(g). Our results confirm
that approximately 80% of these candidates are FGK giants, as their 3σ parameter values
align with the expected ranges for giants ( 4000K ≤ Teff ≤ 6000K, −0.5 ≤ [Fe/H] ≤ 0.3,
and 0.0 ≤ log(g) ≤ 3.0). The remaining 20% were re-classified as FGK dwarfs, with their
parameters falling within the dwarf ranges ( 5000K ≤ Teff ≤ 7000K, −0.3 ≤ [Fe/H] ≤ 0.5,
and 3.5 ≤ log(g) ≤ 5.0).

The efficacy of the triplet loss function in our deep− REMAP model is evident in Figure 2,
which showcases the improved separability of stellar classes in the learned feature space. This
improvement is quantified by a marked increase in classification accuracy and a reduction in
overlap between the parameter distributions of giants and dwarfs.

5 Conclusions and Discussion

We have introduced deep− REMAP, a pioneering neural network designed for the spectral
analysis of 1D spectra, which we have utilized to parameterize MARVELS targets. Our model
is the first of its kind to integrate an array of contemporary machine learning techniques
including transfer learning, multi-task learning, temperature scaling, focal loss, triplet loss,
stochastic weight averaging, cosine annealing-based learning rate, and probabilistic inference
with an asymmetric cost function.
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Figure 2: Visualization of the improved separability of stellar classes in the embedded feature
space for the validation sample, facilitated by the triplet loss function.

Our findings clearly demonstrate that, with carefully curated data augmentation and the
application of transfer learning, our network can transcend the observational idiosyncrasies
of specific spectroscopes. As a result, it is capable of estimating stellar parameters from real
observed spectra with remarkable accuracy. Moreover, we have showcased how adopting a
regression-as-classification approach allows us to capture the non-Gaussian distributions of
the output parameters effectively. Furthermore, the incorporation of an embedding loss not
only enhances the classification results but also significantly improves model interpretability.

For the first time, we present a methodology that predicts the parameters of stellar spectra
with unprecedented accuracy, marking a paradigm shift in automated spectral analysis. This
advancement paves the way for future surveys, providing a scalable and efficient tool for
the rapid classification of an ever-growing number of stellar objects. The deep-REMAP
network stands as a testament to the potential of machine learning in revolutionizing our
understanding of the cosmos.

5



A Acklowledgements

The author would like to thank Dr. Jian Ge and Mr. Kevin Willis, formerly at the University
of Florida, for assistance with this project.

References

[1] D. G. York, J. Adelman, J. E. Anderson Jr, S. F. Anderson, J. Annis, N. A. Bahcall, J. Bakken,
R. Barkhouser, S. Bastian, E. Berman et al., “The sloan digital sky survey: Technical summary,”
The Astronomical Journal, vol. 120, no. 3, p. 1579, 2000.

[2] D. J. Eisenstein, D. H. Weinberg, E. Agol, H. Aihara, C. A. Prieto, S. F. Anderson, J. A. Arns,
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[9] Ž. Ivezić, S. M. Kahn, J. A. Tyson, B. Abel, E. Acosta, R. Allsman, D. Alonso, Y. AlSayyad,
S. F. Anderson, J. Andrew et al., “Lsst: from science drivers to reference design and anticipated
data products,”The Astrophysical Journal, vol. 873, no. 2, p. 111, 2019.

[10] E. J. Kim and R. J. Brunner, “Star-galaxy classification using deep convolutional neural
networks,”Monthly Notices of the Royal Astronomical Society, p. stw2672, 2016.

[11] F. Lanusse, Q. Ma, N. Li, T. E. Collett, C.-L. Li, S. Ravanbakhsh, R. Mandelbaum, and
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Algorithm 1 Continuum Normalization

Input: a vector of spectrum flux measurements of length N, Z = {zn}Nn=1.
Output: the normalized spectrum flux vector of length N, X = {xn}Nn=1.
1: Set a as the maximum quantity of flux values in each bin that are allowed to be larger

than the continuum.
2: Define the initial continuum estimate, C, as a vector of length N with all elements set to

10 + max(Z).
3: for bin count v in range [2, 11] do
4: Partition the index vector, [1, N ], into v uniform bins. In each partition, determine

the center element and place into vector H, H = [N/v/2, {[N/v/2, N ]}Nn=1+N/v]

5: while the quantity of true values in C > Z is greater than a, do
6: for bin index h in a random permuted vector of H do
7: Create a subset of vector C by duplicating indices H of C into vector E.
8: if C(h) > Z(h) then
9: Lower the continuum estimate in bin h by multiplying E(h) by 0.999.

10: if v < 5 then
11: Calculate the continuum estimate, C, by fitting a v − 1 degree polynomial to

(H,E) and evaluate at range [1, N ].
12: To avoid undesired inflections at the continuum edges we perform linear

interpolations to force flat edges in the endpoint bins. At the left edge we
find the slope between the points C(H(1)) and C(H(1) + 1), then extrapolate
to replace the index range [1,H(1)− 1]. The right edge is altered in the same
manner at the index range [H(v) + 1, N ].

13: else
14: Calculate the continuum estimate, C, by linear interpolation of (H,E) and

evaluate at range [1, N ].
15: end if
16: end if
17: end for
18: end while
19: end for
20: Calculate the continuum estimate, C, by fitting a 6 degree polynomial to (H,E) and

evaluate at range [1, N ].
21: To avoid undesired inflections at the continuum edges we perform linear interpolations

to force flat edges in the endpoint bins. At the left edge we find the slope between the
points C(H(1)) and C(H(1)+1), then extrapolate to replace the index range [1,H(1)−1].
The right edge is altered in the same manner at the index range [H(v) + 1, N ].

22: To smooth out the linear interpolations performed at the edges the continuum estimate
is convolved with a gaussian kernel with sigma of 150.
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