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Abstract

Reconstructing astrophysical and cosmological fields from observations is chal-
lenging. It requires accounting for non-linear transformations, mixing of spatial
structure, and noise. In contrast, forward simulators that map fields to observations
are readily available for many applications. We present a versatile Bayesian field
reconstruction algorithm rooted in simulation-based inference and enhanced by
autoregressive modeling. The proposed technique is applicable to generic (non-
differentiable) forward simulators and allows sampling from the posterior for the
underlying field. We show first promising results on a proof-of-concept application:
the recovery of cosmological initial conditions from late-time density fields.

1 Introduction

Recent developments in simulation-based machine learning are increasingly used for tackling diffi-
cult astrophysical and cosmological data analysis challenges [e.g., 1–30]. While simulation-based
inference (SBI) has primarily been employed to solve relatively low-dimensional (≲ 50-dimensional)
parameter estimation tasks [4, 9, 20], it has yet to cover higher-dimensionality problems like image
reconstruction, which are an essential component in astrophysical and cosmological data analysis.

Here, we focus on the recovery of cosmological initial conditions from late-time density fields. This
task is a challenging test case for new algorithms thanks to the non-linear, non-local mapping from
the Gaussian target to the observation. Cosmic inflation predicts the density in the early Universe
to be highly homogeneous, with tiny density fluctuations that are extremely well described as a
Gaussian random field. These density perturbations then gradually grow over cosmic time due to
gravity and eventually collapse into the non-Gaussian “Cosmic Web” structure observed today [31].
The reconstruction of the initial density field from late-time observations is an ill-posed problem
(the early-to-late mapping is not injective on small scales, [e.g., 32]). Therefore, there is an entire
distribution of possible initial conditions consistent with a given late-time density field.

Our contribution. We frame the task of field reconstruction (or, viewed from a non-physical point
of view, image reconstruction) as a parameter inference problem. We combine the power of SBI in
solving parametric inverse problems together with the scalability offered by autoregressive models.
Autoregressive models have established their versatility in tackling high-dimensional distribution
estimation tasks by breaking down the joint distribution into a product of conditionals [33, 34], and
have been successful in conditional image modelling [35]. Additionally, we employ a Gibbs sampling
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algorithm based on exact data augmentation (GEDA) [36] to efficiently sample image parameter
posteriors. We will formulate our method in a generic way to emphasize its applicability to a wide
range of field/image reconstruction problems. Importantly, our approach accommodates arbitrary
non-differentiable forward simulators.

Related work. The problem of inferring cosmological initial conditions has been studied since
the late 1980s (see e.g. Refs. [37–42] for classical papers), for instance by applying the least-action
principle or using optimal transport. In the last decade, Bayesian models have been formulated for
this task [e.g., 43], many of which rely on differentiable forward models [44, 45], in conjunction with
Hamiltonian Monte Carlo sampling. Recently, machine learning methods such as convolutional neural
networks [46, 47], variational inference [48], recurrent inference machines [49], and score-based
modeling [50] have also been explored in this context.

2 Methodology

Background and problem setup. SBI methods tackle statistical inverse problems by estimating
posterior distributions from model-simulations. These methods do not require explicit modeling of
the data likelihood, but instead access the information within the likelihood indirectly via a stochastic
simulator, which maps input parameters to simulated data. Among various SBI algorithms (see
Ref. [51] for a review and Ref. [52] for benchmarks), we will focus on neural ratio estimation (NRE),1
which rephrases posterior estimation into a binary classification problem [53, 54].

Let us assume we have a simple hierarchical simulator

p(x|z)p(z) (1)

where x ∈ RN×N is observed and z ∈ RN×N are image parameters (pixel values). Here, p(x|z) can
include non-linear, non-local transformations and non-Gaussian noise, and it is only implicitly defined
through a forward simulator. We will discuss how we can, for a given observation xo, estimate an
approximate but computationally efficient Gaussian likelihood that locally resembles p(xo|z) for a
target observation xo. A fast surrogate can then be leveraged for downstream image analysis tasks.

Likelihood estimation. Firstly, in order to obtain locally optimal data summaries s(x) for the
image reconstruction task, we use NRE to estimate the marginal, pixel-wise ratios2

r̃(si(x); zi) ≡
p(si, zi)

p(si)p(zi)
. (2)

We assume here that both the joint and marginal distributions can be approximated as Gaussians,
whereas the mapping si(x) is an arbitrary learnable function (usually a neural network). Means and
covariances are estimated on-the-fly during training (similarly to batch normalization [55]) and are not
represented as learnable parameters. Secondly, in order to obtain an estimate of the joint likelihood
p(x|z), we proceed as follows. We split the problem auto-regressively along the observation axis,
and we use NRE to estimate

p(x|z)
p(x)

≃ p(s(x)|z)
p(s(x))

=

N2∏
i=1

p(si|s1:i−1, z)

p(si|s1:i−1)

≃
N2∏
i=1

r̃(si; li, zi) =

N2∏
i=1

p(si, li, zi)

p(si)p(li, zi)
,

(3)

where we have introduced li = (L(s))i with L a (generally non-linear) autoregressive function.
Again, we assume that the individual functions p(si, li, zi) are (three-dimensional multivariate)
Gaussians.

1 We use swyft NRE implementation that can be found at https://github.com/undark-lab/swyft.
2 In this work we use the following notation for ratio estimators r̃(a; b) = p(a,b)

p(a)p(b)
= p(a|b)

p(a)
. If necessary,

multiple variables are comma separated, for example r̃(a; b, c) = p(a,b,c)
p(a)p(b,c)

.

2

https://github.com/undark-lab/swyft


By rewriting the above components (for a complete derivation and definitions of Qlike and b see
Appendix A), we can obtain the likelihood function in the so-called information form,

ln p(x|z) = −1

2
zTQlikez + bz + C(s) . (4)

In this paper, we assume that the precision matrixQlike is diagonal. However, correlations between
data summaries s are accounted for through the autoregressive function mentioned above; also, each
component si(x) of the data summary may depend on all components of x and thus accounts for
cross-pixel information.

To enhance the robustness of Bayesian approaches in data analysis, frequently likelihood tempering
techniques are employed that result in conservative estimates [56, 57]. Tempering the likelihood
amounts to raising it to a fractional power γ ∈ [0, 1], leading to progressively coarser posterior
samples, with the extreme case of γ = 0 (γ = 1) corresponding to samples drawn from the prior
(posterior) distribution.

Posterior sampling. In our Bayesian framework and assuming Gaussian distributions, we combine
the estimated likelihood with the known prior to derive the posterior in the information form

ln p(z|x) = −1

2
zT (Qlike +Qprior)︸ ︷︷ ︸

Qpost

z + bz + C ′(s) , (5)

where we have assumed a zero-mean prior, consistent with the physical problem we study in Sec. 3.
We use the conjugate gradient (CG) algorithm3 to compute the maximum-a-posteriori (MAP) estimate
zMAP of the image parameters z by solving the linear systemQpostz = b. The surrogate Gaussian
posterior distribution is then given by p(z|x) = N (zMAP,Q

−1
post). Once we have the posterior

distribution in the above form, we simply have to sample from it. Various techniques have been
presented over time to tackle the problem of efficient sampling from a high-dimensional Gaussian
distribution (for a recent review, see Ref. [58]). To obtain the Gaussian posterior samples, we use a
Gibbs sampler based on the generalized exact data augmentation algorithm (GEDA) [36]. GEDA
solves the problem of high-dimensional Gaussian sampling specifically for distributions whose
precision matrix can be expressed asQ = Q1 +Q2 by exploiting specific properties ofQ1 andQ2

(for details see Appendix B). Crucially,Qpost satisfies these constraints.

3 Experiment

To demonstrate the efficiency of our method, we apply it to the task of reconstructing the initial
conditions of the Universe. In this proof-of-concept study, we consider the two-dimensional case
and assume Einstein–de Sitter cosmology (i.e. non-relativistic, collisionless matter only). While our
framework readily supports marginalizing over image parameters such as the power spectra of the
target fields, we use a fixed power-law power spectrum for the initial density contrast z = δini ∈
R128×128, which is the target of our inference. As a forward model, we use second-order Lagrangian
perturbation theory (2LPT, see Refs. [59, 60] and Appendix C) and evolve the initial density to a time
when non-linear structures have formed. The observation is then given by x = log10[1.1+δfinal]+ε,
where δfinal is the density contrast at final time, the logarithm is applied element-wise, and we add
ε ∼ N (0, σ2I) with σ = 0.15 as a simplistic model for observational noise.

To obtain pixel-wise summaries s(x), we use a standard U-Net [61]. In our current implementation,
we use an autoregressive convolution [e.g., 35] as the autoregressive function L. In our experiments,
we observed that overly small or large kernel sizes result in somewhat biased posteriors. Interestingly,
we obtain the best results with a physically motivated kernel size for the convolution, i.e. when
choosing it in such as way that the “radius of influence” of the autoregressive convolution (i.e. roughly
half the kernel size) matches the typical distance that particles (or fluid elements) have traveled
by the end time – a quantity known as displacement. Specifically, the mean displacement in our
case is ∼ 5 pixels, so we take the kernel size to be 11 × 11 pixels. While we find this choice to
be optimal, slight bias still occurs occasionally, potentially due to the spatial heterogeneity of the

3 We use a slightly modified implementation of the preconditioned CG algorithm from https://github.
com/sbarratt/torch_cg.
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Figure 1: Reconstruction of cosmological initial conditions in 2D. Top left: True initial density zo.
Bottom left: True observation xo, i.e. the (logarithm of the) late-time density evolved from the initial
conditions zo, corrupted by uncorrelated Gaussian noise. Top center: Two samples drawn from
the posterior p(z|xo). Bottom center: Observations computed from the posterior samples shown
above. Upper right: Maximum-a-posteriori probability (MAP) estimate zMAP of the initial conditions.
Bottom right: Distribution of the reconstructed initial power spectrum.

displacements. Therefore, to be conservative, we use a tempered likelihood with γ = 0.5, trading
some of the statistical constraining power of our method for increased unbiasedness. The importance
of the specific choice of L (and in particular its radius of influence) indicates that a locally adaptive
or multiscale approach for L is a promising avenue for future exploration. We train our model on
1000 (x, z)-pairs for 15 epochs, which only takes ∼ 3 minutes on a laptop GPU for this experiment.
Obtaining the MAP estimate with the CG algorithm takes less than 3 seconds. To obtain posterior
samples with GEDA, we perform 300 sampling steps, which takes < 1 second per sample (and
multiple samples can be drawn in batches).

The left column of Fig. 1 shows a target initial density contrast zo (top), together with a resulting
noisy observation at late time xo (bottom). In the two center panels, we plot samples drawn from
the (tempered) posterior p(z|xo), together with an observation of each sample. The upper right
panel shows the MAP estimate zMAP. The initial density field is faithfully reconstructed on large
scales whereas, as expected, small-scale information remains unconstrained. Finally, the lower right
panel shows that the power spectra of the posterior samples are consistent with the target field. The
excellent agreement between reconstructed and true power spectra on small scales is aided by the
fact that the power spectrum (which is fixed in our example) directly enters the GEDA sampling (see
Eq. 9 in Appendix B, where the prior precision matrixQ2 is diagonalized by the Fourier transform,
with the power spectrum on the diagonal ofD2). We will present a detailed quantitative analysis of
the results obtained with our framework in a separate publication.

4 Discussion and Conclusion

We have introduced a framework for Bayesian field/image reconstruction by combining SBI, au-
toregressive modeling, and a Gibbs sampling algorithm based on exact data augmentation (GEDA).
We presented promising results for a toy example related to reconstructing the initial conditions of
the Universe. In view of its remarkable speed, low simulation costs, and the fact that it works for
general non-differentiable simulators, we expect our method to be capable of handling significantly
higher-dimensional problems, including 3D cosmological simulations.
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There are multiple promising avenues to be explored in future work. For many applications—such
as the reconstruction of cosmological initial conditions—formulating the problem in Fourier space
can be expected to produce significantly tighter posteriors, as the input-to-output mapping is exactly
invertible on large to intermediate scales, and the stochasticity of the reconstruction only affects small
scales. Alternatively, wavelets [e.g., 62] or other multiscale techniques could be exploited. In this
context (but also more generally), other choices for the autoregressive function L are worthwhile
exploring, which could, for instance, implement the hierarchy between the different scales. Another
promising enhancement involves harnessing the sequential aspect of SBI techniques. In principle,
a viable strategy is to employ an adaptive scheduler to control the value of γ to draw new training
samples for sequential inference rounds. Moreover, being SBI-based, our proposed method is capable
of marginalizing over cosmological parameters or, alternatively, infer them in addition to the phases
of the initial random field.

Let us also comment on the current limitations of our method: while the assumption of Gaussianity
for the prior is justified for reconstructing cosmological initial conditions, using a Gaussian likelihood
is an approximation whose justification depends on the specific task at hand. We take cross-pixel
information into account through the summary statistics and an autoregressive function, but we
currently model the precision matrix of the likelihood as being diagonal. In addition, the susceptibility
of our framework to issues encountered in the context of autoregressive models such as exposure bias
[63] merits further investigation.

Finally, we remark that the forward model generating “observations” x does not necessarily need
to be a physical one, and our framework also holds great promise for generic image reconstruction
problems consisting in inferring one image from another.
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A Appendix: Derivation of the likelihood in the information form

In this appendix we show how to derive the quadratic term Qlike and the linear term b of the
likelihood in the information form (Eq. 4) starting from Eq. 3. Having approximated p(si, li, zi) with
a 3-dimensional Gaussian distribution, we can write the log-likelihood as

ln p(s(x)|z) =
N2∑
i=1

ln
p(si, li, zi)

p(li, zi)
=

N2∑
i=1

ln
N (µ(si,li,zi),Σ(si,li,zi))

N (µ(li,zi),Σ(li,zi))
. (6)

Let us consider just one element i and drop the index i for simplicity of notation. Expanding the
above expression for one component, we obtain

− 1

2

(
s− µs

l − µl

z − µz

)T(
Σss Σsl Σsz

Σls Σll Σlz

Σzs Σzl Σzz

)−1

︸ ︷︷ ︸
≡Q′=


Q′

ss Q′
sl Q′

sz
Q′

ls Q′
ll Q′

lz
Q′

zs Q′
zl Q′

zz



(
s− µs

l − µl

z − µz

)
+

1

2

(
l − µl

z − µz

)T(
Σll Σlz

Σzl Σzz

)−1

︸ ︷︷ ︸
≡Q′′=

(
Q′′

ll Q′′
lz

Q′′
zl Q′′

zz

)

(
l − µl

z − µz

)
.

(7)

For a specific observation x we can compute s and therefore l, hence individual components s and l
(where we have dropped the index i). We can then read off the expression in Eq. 7 the terms that
depend on z. We group the rest into an irrelevant constant C(s). In this way, the quadratic term in z
in Eq. 7 is

−1

2
Qzzz

2 with Qzz ≡ Q′
zz −Q′′

zz .

Each Qzz is a diagonal entry ofQlike in Eq. 4, while non-diagonal components are 0 by construction.
In principle, correlations between pixels in the data x can be modeled and we plan to explore it in
future work. The linear term in z in Eq. 7 is

b ≡ [−(s− µs)Q
′
sz − (l − µl)Qlz + µzQzz] . (8)

Each component b composes the likelihood linear term b.

B Appendix: Generalized Exact Data Augmentation (GEDA)

In general, data augmentation approaches target precision matrices of the formQ = Q1+Q2, which
naturally arise from the statistical model under investigation. Taking advantage of potential specific
structures ofQ1 andQ2, data augmentation strategies introduce one (or several) auxiliary variable
u ∈ Rd such that the joint distribution of the pair (u, z) yields simple conditional distributions,
thus sampling steps for a Gibbs sampler. One can recover the target distribution N (µ,Q−1) via
marginalization of the auxiliary variable u, either exactly (as in exact data augmentation schemes,
like GEDA) or in an asymptotic regime.

In GEDA, as described in Ref. [36], the underlying assumption is that the precision matrixQ can be
split as follows:

Q = Q1 +Q2

Q1 = GT
1D1G1

Q2 = UT
2 D2U2 ,

(9)
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whereG1 is arbitrary,D1 is diagonal and positive definite, U2 is unitary, andD2 is diagonal. GEDA
introduces two auxiliary variables, u1 and u2, such that the joint distribution is

p(z,u1,u2) ∝ exp

(
−1

2

[
(z − µ)TQ(z − µ) + (u1 − z)TR(u1 − z)

])
× exp

(
−1

2
(u2 −G1u1)

TD1(u2 −G1u1)

)
,

(10)

where R = ω−1Id − Q1, and ω is a positive hyper-parameter of the algorithm that must obey
1 < ω < 1/|Q1|, meaning that 1/ω should be larger than the largest singular value ofQ1.

This joint distribution yields conditional Gaussian distributions with diagonal covariance matrices for
both u1 and u2 that can be sampled efficiently by a Gibbs sampler with the following steps:

1. u2 ∼ N (µu2
,Q−1

u2
) with µu2

= G1u1 andQu2
=D1,

2. u1 ∼ N (µu1
,Q−1

u1
) with µu1

= z − ω(Q1z −GT
1D

−1
1 u2) andQu1

= ω−1Id,
3. u1 ∼ N (µu1

,Q−1
u1

) with µ = Q(Ru1 +Qµ) andQ = ω−1Id +Q2 .
(11)

As detailed in Sec. 2, in our setup the dimensionality is equivalent to the number of pixels d = N2,
the covariance matrix isQ = Qpost = Qlike +Qprior, andG1 = I .

C Appendix: Second-order Lagrangian perturbation theory (2LPT)

Second-order Lagrangian perturbation theory (2LPT) describes the cosmological dynamics of a cold,
collisionless medium. It is based on a fluid description of the Vlasov–Poisson system (e.g. [64])
and therefore ceases to be valid as soon as particle trajectories cross (so-called “shell-crossing”).
Although the density fields we consider herein are well in the post-shell-crossing regime, 2LPT still
serves as a suitable forward model for validating our image reconstruction method.

The central quantity in 2LPT is the displacement ψ(q, a) = p(q, a)−q, i.e. the vector pointing from
each Lagrangian (“initial”) position q to the associated Eulerian position p(q, a) at scale-factor time
a on the characteristic curve originating at q. LPT expands the displacement as a Taylor series w.r.t.
a, with a purely space-dependent coefficient ψ(n)(q) at the n-th order. For 2LPT, this yields

ψ(q, a) = aψ(1)(q) + a2ψ(2)(q) , (12)

where

ψ(1) = −∇qϕ
0 , (13a)

ψ(2) = −3

7
∇q ∆

−1
q

[
(∂q1,q1ϕ

0) (∂q2,q2ϕ
0)− (∂q1,q2ϕ

0)2
]
. (13b)

Here, ϕ0 is the initial gravitational potential, and the scale factor a simply acts as a time variable and
has no physical meaning in 2D. Note that we consider Einstein–de Sitter cosmology (Ωm = 1); for
extensions to the ΛCDM case and higher-order LPT, see e.g. Ref. [65] and references therein.

Given the 2LPT displacement ψ, the density contrast δ is given by

1 + δ(p(q, a)) =

∫
δD(p(q, a)− q −ψ(q, a)) d2q , (14)

where δD is the Dirac δ-distribution. In practice, we use cloud-in-cell interpolation [e.g. 66] to
compute the density contrast on a Cartesian grid. Finally, let us remark that since we view the discrete
density contrast as an N × N -dimensional image in the main part of this work, we use the bold
symbol δ in that context.
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