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Abstract

The ability to non-invasively measure local conductivity and permittivity at the
nanoscale is of fundamental importance in unraveling the physics of quantum
systems. One approach is Microwave Impedance Microscopy (MIM), a scanning
probe technique operating at microwave frequencies. However, the resulting
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large datasets and vast parameter space make obtaining a mapping between MIM
measurements and local microscopic properties challenging. Here, we overcome
this challenge by using machine learning to reconstruct the local properties while
incorporating physical priors. The synergy between MIM and ML allows for the
quantitative predictions of complex interactions between excitons, charge carriers,
and the dielectric environment. This approach provides profound insights into the
fundamental physics of excitons in two-dimensional materials.

1 Introduction

The quest to unlock the properties of quantum materials at the nanoscale has led to the development
of cutting-edge techniques. Among these, Microwave Impedance Microscopy (MIM) stands out as
a powerful scanning probe method that has the capability to probe a sample’s local properties with
sub-100 nm spatial resolution, with applications ranging from semiconducting devices to biological
specimens [1]. Current research aims to expand MIM’s capabilities for materials discovery and
development by realizing high-speed imaging, multimodal imaging and improved spatial resolution.
The improved capabilities result in large datasets that call for new algorithms to extract meaningful
physical insights from them.

In this work, we develop a machine learning-based approach to enhance the MIM capabilities.
In particular, we focus on understanding local optoelectric and dielectric properties in monolayer
transition metal dichalcogenides (TMDs), known for robust excitonic effects due to high binding
energies, direct bandgap, and strong light-matter interactions. The measurements were done using
advanced exciton-resonant microwave impedance microscopy (ER-MIM) that is highly sensitive to
exciton photoconductivity and dielectric properties [2]. However, the data obtained from ER-MIM is
massive and multidimensional, making manual analysis time-consuming and error-prone. To enhance
the efficacy of the analysis, we integrate ER-MIM with ML algorithms to automate the analysis
process, and harness their combined potential to quantitatively investigate the complex interactions
among excitons, charge carriers, and the dielectric environment. This innovative synergy opens up
new avenues for understanding complex quantum phenomena.

Main Contributions: We employ ML to predict optoelectric properties and dielectric characteris-
tics of monolayer TMDs based on ER-MIM measurements. Our approach predicts the probability
distributions of conductivity and dielectric properties, integrating physics knowledge into measure-
ments. This integration of ML with experimental techniques enables precise material analysis at the
nanoscale.

Related Work: ML has improved the analysis of scanning probe methods like scanning tunneling mi-
croscopy (STM) and atomic force microscopy (AFM), enhancing speed, noise reduction, automation,
and property extraction [3, 4, 5, 6]. Scattering-type scanning near-field optical microscopy (s-SNOM)
also benefits from ML, aiding denoising and phase classification [7]. However, in the intersection of
optics and microwave impedance microscopy, the application of ML and AI is still emerging, an area
we address in this work.

2 Deep neural network for local property predictions

MIM operates by positioning a microwave-driven metal tip near a sample’s surface. The sample
modifies the electric potential around the tip, which causes a portion of the electrical signal to reflect
back along the microwave line, providing information about the sample’s local properties and its
dielectric environment. Figure 1 shows typical response curves of MIM as a function of conductivity.
The sample is encapsulated by a 30 nm thick hexagonal Boron Nitride (hBN) substrate, and the
substrate’s permittivity, denoted as ϵ, influences the measurement. Change in the sample topography
affects the tip-sample distance, denoted as h, with smaller values of h resulting in stronger signals.

Our goal is to predict the local environment (σ, ϵ, h) for a given set of MIM real and imaginary parts,
Re(∆MIM) and Im(∆MIM). However, this mapping is not bijective, as multiple sets of (σ, ϵ, h)
can correspond to the same (Re(∆MIM), Im(∆MIM)). Therefore, instead of predicting a fixed
(σ, ϵ, h), we assign a probability to each set of (σ, ϵ, h) for a given measurement. Figure 1 shows
the network architecture used for predicting local properties. The network takes input values of
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Figure 1: Architecture for predicting the probability distribution of local microscopic properties.
Insets show the conductivity σ as a function of different values of the real and imaginary parts of the
MIM for a fixed tip-sample height h = 10 nm, with each curve corresponding to a different substrate
permittivity. The real and imaginary parts are used as inputs to the network. The outputs represent
the probability for each given set of (σj , ϵj , hj).

Re(∆MIM) and Im(∆MIM), either from experiments or simulations, and predicts the probability
distribution for discretized (σ, ϵ, h) values.

For training the network, we start by simulating Re(∆MIM) and Im(∆MIM) for various sets of
(σ, ϵ, h) (see Fig. 1 insets). We then interpolate this simulation data across a physically relevant range
of (σ, ϵ, h) values: σ from 1× 10−11 to 6× 10−3 S/sq, ϵ between 3.2 and 3.9 [8], and h from 6 to
18 nm, with even spacing in each dimension. This amounts to a total of 64,000 sets of data. We
further divide the data into bins: 32 bins for σ, 8 bins for ϵ, and 15 bins for h, resulting in 3,840 bins
in total. Each data point is then encoded into a 3,840-dimensional one-hot encoding vector based
on its bin membership. During training, we minimize the Binary Cross Entropy loss, transforming
the prediction into a classification problem, where the network output is a 3,840-dimensional vector
representing the probability for each bin.

The network architecture consists of 2 hidden layers with 100 nodes each. We use the Adam optimizer
with a constant learning rate of 0.01 and set β1 and β2 to 0.999 and 0.9999, respectively. We train
until the variance of the loss function over the last 200 steps falls below 1× 10−5. Data is randomly
split into 80% for training, 10% for validation, and 10% for testing.

3 Results

Evaluation on the test data: We first assess the trained network’s performance on synthetic data with
noise added. Figure 2(a)-(b) shows simulated Im(∆MIM) and Re(∆MIM) at varying conductivity,
while holding ϵ and h constant. We average over 100 samples drawn from the predicted probability
distribution for each input set. Given the multivalued nature of the real and imaginary parts of MIM
in ϵ and h, we condition the sampling of the initial sample at the first σ value around ϵ0 = 3.5
and h0 = 12 nm. To achieve this, we calculate the distance, D, of each bin from (ϵ0, h0) as
Dj =

√
(ϵj − ϵ0)2 + (hj − h0)2 and weight the predicted probability distribution with exp(−αDj),

where α denotes the constraint strength (with α = 2 in this case). Subsequent samples are conditioned
on the (ϵ, h) values of the preceding sample. Figure 2 (c)-(e) illustrates the neural network-predicted
ϵ, σ, and h as functions of the ground truth σ. The predictions align with the ground truth (red dashed
line) within error bars in all cases, indicating our model’s accurate prediction capability for (σ, ϵ, h)
in MIM measurements despite the noise.
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Figure 2: (a)-(b) Synthetic data obtained from interpolating simulations with random noise of
amplitude 0.04, while varying conductivity σ and keeping permittivity and sample-tip distance fixed
at ϵ = 3.5 and h = 12nm, respectively. (c)-(e) Predicted ϵ, σ, and h as functions of the ground truth
conductivity, averaged over 100 samples. The red dashed lines represent the ground truth.

(a) (b)

(c) (d)

Figure 3: (a)-(b) Imaginary and real parts of MIM
at Vg = −2.25V and wavelength λ = 745 nm.
(c)-(d) predicted hBN permittivity (c) and height-
sample distance (d).

Figure 4: Height distribution used as an
initial guess for Fig. 3.

Predictions from Experimental Data: We now use the trained model to predict the local environment
and properties of a MoSe2 device under light coupling based on experimental measurements. A
graphite gate covers the right side of the measurement region, forming a p-n junction. By varying
gate voltages on the right region and the optical wavelength, we measure the change in the ER-MIM
response. Here, due to the coupling to the light, we measure the photoconductivity instead of the
static electrical conductivity. A typical ER-MIM scan is shown in Fig. 3(a)-(b) for a 1µm×1µm
region. We take one set of scans for predicting ϵ and h and keep them fixed. This is because ϵ
and h are determined by the substrate and the sample topography respectively and therefore are not
expected to change from scan to scan. While we do not have access to the precise sample topography,
based on the AFM image that reveals a bubble on the right and the existence of an edge on the left,
we condition the sample on an initial guess height distribution shown in Figure 4 based on an AFM
image, and apply a smoothness constraint when drawing samples. The neural network-predicted ϵNN

and hNN are shown in Fig. 3(c)-(d). The predictions are averaged over 10 samples for each pixel. The
predicted hNN (Fig. 3(d)) shows a sharp edge on the left despite the smooth variation in the initial
guess height, and ϵNN does not have a big variation, both agreeing with the physical expectations.

We condition the remaining parameters based on (ϵNN, hNN) from Fig. 3, using a modified probability
weighted by exp(−αDj). Figure 5 displays sample predictions at a fixed optical wavelength of
759 nm and varying gate voltages. The bottom row depicts NN-predicted conductivity. At a large
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Figure 5: Imaginary (top) and real parts (middle) of the ER-MIM measurements at 4 different back
gate voltages, Vg. From left to right: Vg = 2.25 V, 3.0 V, 4.0 V, and 5.0 V. The bottom row shows
the neural network predicted conductivity. Bottom row insets: autocorrelation of the predicted
conductivity. Scale bars are 200 nm.

voltage (Vg = 5V), conductivity is large, which is consistent with semiconductor behavior under
applied voltage. To quantitatively compare conductivity maps, we calculate the autocorrelation of
σNN (insets in Fig. 5). At Vg = 3V, A excitons are in resonance (not shown), leading to vertical
autocorrelation suppression. We observed similar behavior for other gate voltages and resonant
wavelengths, indicating that excitons enhance sample photoconductivity inhomogeneity.

4 Conclusions

We present an ML-based approach using ER-MIM measurements to predict material properties
(sample topography, electrical and photoconductivity) and local environment (substrate permittivity).
The probabilistic model incorporates physics knowledge, considering factors like a physical edge
and sample inhomogeneity. Predicted conductivity and permittivity, along with exciton eigenenergy
recombination [9], enable the prediction of nm-scale local electric field distribution, often inaccessible
through traditional methods.

Broader Impact

In this work, we present a use case of an ML-based probabilistic model to accelerate the understanding
of material properties. ML integration with scanning methods is only a recent development, with
ER-MIM yet to benefit from it. The substantial data generated by these scans will likely lead to
automated analysis in the near future. Our work represents a crucial stride toward automating the
entire process, from data collection to property extraction, facilitating faster discovery of quantum
phenomena and materials with reduced resource requirements.
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Thibault Chervy, Xiaobo Lu, Song Liu, Katayun Barmak, Kenji Watanabe, Takashi Taniguchi,
David J. Norris, Martin Kroner, and Puneet A. Murthy. Electrically tunable quantum confinement
of neutral excitons. Nature, 606(7913):298–304, 2022.

6


	Introduction
	Deep neural network for local property predictions
	Results
	Conclusions

