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Abstract

Computationally expensive simulations pose a severe bottleneck, especially in
astronomy, where several realizations of the same physical processes are required
to facilitate scientific studies, such as exploring new physics or constraining the
underlying physics by comparing it with observations. Simulations that modify
Einstein’s gravity require solving highly non-linear equations and take ∼10-20
times more time than the normal ones. In order to mitigate this bottleneck, we use
a conditional generative adversarial network (cGAN) to map output fields from
normal simulations to output fields of time-consuming simulations. Our model
uses a frequency-based loss during training and uses indirect emulation wherein
the mapping is achieved using ratio fields instead of the traditional input → output
domain translation. Our cGAN agrees well with the ground-truth images despite
the visually minor differences between fields from the input and output domains.

1 Introduction

A cosmological model describes the Universe by providing information about space-time geometry,
matter, its physical behavior, and how matter and geometry are related. The Λ Cold Dark Matter
(ΛCDM) model is the currently most widely accepted model (also called the standard model of
cosmology) and is based on Einstein’s general theory of relativity (GR). It agrees well with several
observed properties of the Universe, such as the accelerated expansion of the Universe and the
observed distribution of clusters of galaxies in the Universe [e.g., 21, 17, 24]. However, it has also
been found to be in tension with some observational datasets and suffers from theoretical issues
such as coincidence and fine-tuning problems [see, e.g., 6, 18, for reviews]. These prevailing issues
have motivated the development of alternative theories to ΛCDM that can resolve these issues while
explaining observations well.

Testing deviations from GR on cosmological scales is a key science target of several ground- and
space-based surveys on which the community has spent billions of dollars. One promising alternative
to ΛCDM is the class of modified gravity ([5]; MG) models, which modify GR equations from
ΛCDM. As a result, the behavior and evolution of matter in MG differs from ΛCDM. Since GR is
experimentally confirmed to be accurate in our local Universe but not yet on the (large) cosmological
scales, MG models devise a new force law that converges to GR in the local Universe. Apart from
the four fundamental forces of nature, these modifications to gravity can be considered a fifth force.
The properties of this new fifth force are well constrained so that it is compatible with experiments
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deeming GR to be valid in the local Universe. The constraint is obtained by a ‘screening’ mechanism
that suppresses the fifth force or, equivalently, hides modifications to Einstein’s gravity in local
regions, such as our solar system (such regions are also of high density compared to the average
density of the entire Universe).

A particularly widely studied MG theory is f(R) gravity [1], parametrized by two free parameters, n
and |fR0|. However, due to the modified nature of gravity, the resulting equations in f(R) (and MG,
in general) become highly non-linear, due to which N -body simulations are necessary for studying
matter evolution in f(R) [see e.g., 13]. In our internal experiments, a typical f(R) simulation
run requires at least ten times more time than the corresponding ΛCDM simulations, which is a
considerable bottleneck.

Deep learning methods have been regarded as promising emulators in cosmology applications in
recent years [e.g., 16, 4, 19]. In this study, we aim to leverage a cGAN [15] to learn a mapping
from the ΛCDM density fields (denoting matter distribution) to its f(R) counterpart by casting
the mapping as an image-to-image translation problem. We show that meaningful mapping can be
learned despite the intricate differences between the matter distribution of the two gravity models.

2 Methods

2.1 Data

Simulations for the ΛCDM and f(R) models are run using the MG-GLAM [8] code, an efficient
extension of the GLAM [12] parallel particle mesh (PPM) N -body code. The implementation of the
f(R) gravity model in MG-GLAM follows [9]. The modified gravity parameters are turned off for the
corresponding ΛCDM simulations. We use n = 1 and a variant of f(R) gravity having |fR0| = 10−4.
The length of our simulation box is L = 128 h−1 Mpc, and the number of particles is Np = 2563.
We focus on simulation results from redshift zero, which represents the current epoch of the Universe.
Five different realizations for ΛCDM and f(R) simulations are run to generate sufficient training
data for training the neural network.

We use the Delaunay Tessellation Field Estimator (DTFE) code of [3] to estimate the volume-averaged
density fields and interpolate them on a grid of size 5123. For computational reasons, we extract 2D
maps across the three axes (X–Y, Y–Z, X–Z) from each three-dimensional density field to generate
our data. As a common practice in cosmology applications, maps are not randomly split into training,
validation, and testing sets, as it can lead to overestimating model performance [20]. Instead, maps
from 3D fields of three realizations are used for training. One realization is used for validation, and
the other for testing.

For ease of notation, density fields from ΛCDM and f(R) will be called GR and F4, respectively.

2.2 Model architecture and training details

Our basic GAN architecture follows the pix2pix software [10]. The discriminator of our cGAN
(called PatchGAN) uses the loss from the Least Squares Generative Adversarial Network (LSGAN),
where an L2 loss is used instead of binary cross-entropy that addresses the vanishing gradient problem

[14]. The objective is: min
D

LLSGAN(D) =
1

2
Ex,y[(D(x, y)−b)2]+

1

2
Ex,z[(D(x,G(x, z))−a)2] and

min
G

LLSGAN(G) =
1

2
Ex,z[(D(x,G(x, z))− c)2], where x is the input GR map, y is the prediction

(in our case, this is the pixel-wise ratio of f(R) and GR maps; see Sect. 2.3), and z is a random noise
vector, D and G are the discriminator and generator models. a = 0, b = 1, since the fake and real
images are labeled 0 and 1, respectively, and c = 1 since the generator aims to fool the discriminator.

The additional L1 loss term used in pix2pix takes the form λEx,y,z[||y −G(x, z)||1], which G tries
to minimize and enforces the generated images closer to the ground truth. The L1 loss can prevent
mode-collapse and takes advantage of the supervised nature of cGAN. We use λ = 200 after finding
that it works best for our case.

The L1 loss primarily forces the low-frequency components to match the ground truth. While
pix2pix accounts for high-frequency correctness using the PatchGAN discriminator [10], a study by
[11] proposed that explicitly incorporating a frequency-based loss function, complementary to the
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(spatial-domain) L1 loss improves image translation. The authors call this focal frequency loss (FFL),
which adapts itself to pay more attention to frequency components that are difficult to produce. Since
cosmological fields carry important frequency information (quantified by the power spectrum, see
Sect. 3), such a loss function is a natural choice. Our application uses a combination of L1 and FFL
losses with equal weightage (0.5) for both terms. During training, we use the common practice of
performing one gradient descent step of D followed by one step for G [7]. While optimizing D, we
divide the objective by two to slow down the rate at which D learns compared to G. Dropout layers
in the model introduce stochasticity during training [10], which are turned off during evaluation.

The generator in pix2pix is a U-Net [23], an encoder-decoder architecture equipped with skip
connections between mirrored layers from the encoder and the decoder. These connections are
essential to prevent the loss of spatial details during image downsampling. Our encoder consists of
nine convolutional layers, transforming the 512× 512 maps into 1× 1 dimensions at the bottleneck.
The decoder then transforms this latent representation using a series of transposed convolutional
operations. Our PatchGAN contains four convolutional layers and predicts whether a given image
is real or fake. Each convolutional layer in our architecture has a kernel size of 4, ReLU activation
(leaky for the discriminator and the encoder in the generator with slope 0.2 but non-leaky for the
decoder in the generator), and instance normalization [25] is used. The final operation performed in
the generator is the Tanh activation, which restricts the dynamic range of densities to [−1,+1]. We
have used a scaled natural logarithm transformation (lnx/c) for preprocessing the maps since we
found it to perform better than the transformation of [22] commonly used in GAN applications in
cosmology. We set c = 10 based on the densities from the training set.

Models are saved after every ten epochs during training. After training, all saved models are used
on the validation set maps, and the model with the best performance (see Sect. 3 for the metrics) is
selected for evaluation on the test set.

2.3 Ratio fields approach

The differences in the density fields of GR and F4 are minor, making it challenging to learn meaningful
mapping. Our internal experiments suggested that a direct mapping of fields from GR to f(R) could
not produce plausible results based on the metrics in Sect. 3. We thus propose to map the GR field to
the ratio field, i.e., f(R)/GR, since it better reveals the intricate differences and assists the cGAN in
learning the mapping better. The final F4 prediction is obtained by multiplying the predicted ratio
map with the simulated GR map.

3 Results

Fig. 1 shows an example visualization of the simulated GR and F4 maps and the cGAN prediction
for a random map from the test set. The string-like structures in the maps are called filaments and are
thicker in f(R) due to enhanced gravitational forces compared to GR [13], as shown by the white
and green ovals. The cGAN successfully reproduces the enhanced thickness. Some extremely high
densities (denoted by the orange-white color) tend to not be reproduced accurately by the cGAN, as
seen in the lower-right part of the green oval.

Figure 1: Sample visualization of the simulated GR and F4 and the cGAN predicted F4 map. Maps
are shown in the logarithm scale. The map’s dimensions are 512× 512 (see Sect. 2.1 for details).
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Figure 2: The mean power spectra, density histogram, and the standard deviation of counts averaged
across the entire test set. For histograms, binning is done in log space.

To quantify the performance of the cGAN, we compare the power spectrum calculated by the
Pylians package [26], the histogram of the densities, and the standard deviation in the histogram
counts in Fig. 2. The density histograms are calculated on fields smoothed using a spherical top-hat
filter of smoothing scale, Rth = 10h−1Mpc, similar to [2]. The power spectrum of the cGAN
prediction agrees exceptionally well with the ground truth (F4 sim) with, on average, ≲ 5% error.
The density histogram suggests that the agreement of the cGAN prediction is good for the densities,
0.25 ≲ ρ/ρmean ≲ 10, whereas worse for extremely low or high densities. While this suggests that
outlier densities in the maps are not reproduced well, the bulk of the dynamic range of densities is
reproduced reasonably accurately by the cGAN. The rightmost plot shows the bin-wise standard
deviation of the counts from the middle histogram plot. This figure shows that cGAN can reasonably
reproduce the scatter in the density distribution across the entire range of densities except for the
most empties regions, ρ/ρmean ≲ 0.2. Thus, the cGAN can generate density maps consistent with the
ground-truth F4 maps in terms of the density distribution’s first and second moments (i.e., mean and
standard deviation, respectively).

Table 1: Comparison of execution times of F4 simulations and our proposed approach. tcGAN

includes the elapsed wall-clock time on the CPU for preprocessing the input map and the forward
pass of the model in inference mode and is calculated using a randomly selected map from the test
dataset. tf4 and tgr are the time required for F4 and GR simulations, and Ng is the grid size in one
dimension, which is 512 here. Simulations use 32 cores (each core contains a single thread in our
case), whereas cGAN inference uses a single thread, so the simulation time is the total CPU time
obtained by scaling the wall-clock time by the no. of threads. I/O overhead for cGAN emulation and
simulations are assumed to be similar.

F4 simulation Our approach

Time required (mins)
tf4 = 1610.28 tgr = 88.74

tcGAN = 0.0268

Total time (mins) tf4 = 1610.28 tgr +Ng × tcGAN = 102.46

Table 1 compares the execution times of our proposed approach using the cGAN emulator and the
N -body simulations using the MG-GLAM code. We recall that the output of N -body simulations
is particle positions in a 3D volume, which is then interpolated onto the 5123 grid. However, our
cGAN is designed to emulate 2D maps, which are slices of the 3D grid. Hence, the time required
by the cGAN is scaled by 512 to find the time required to emulate the entire 3D density field. We
assume that the time DTFE requires to interpolate the particle positions output from the GR and
F4 simulations is the same and is not included in the comparison. We average each of these times
across a few independent runs. The table shows that our approach requires ∼16 times less time
than the F4 simulations, significantly alleviating the computational burden. We further stress that
the MG-GLAM simulation code was designed with a focus on efficiency and optimization and was
found to be ∼100-300 times faster than other full N -body simulation codes such as ECOSMOG or
MG-AREPO in [8]. Thus, our cGAN approach would reduce the computational costs by an order of
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thousands compared to full N -body simulations of F4. Time for cGAN emulation was measured on
the CPU; access to GPUs would make the benefits more pronounced.

The generator of our cGAN contains 267.93M parameters, and its computational complexity is 284.69
GMac1 (Mac: Multiply-Accumulate Operations) for a single 512× 512 resolution map. These facts
are noted to inform the computational costs of our method and to decide whether our cGAN approach
is feasible based on the computing resources available to the user.

Our preliminary results hint that the generator’s test-time performance shows a non-trivial variance
across different training runs, which could arise due to the large size of the generator or due to the
prevailing issue of unstable GAN training. More investigation is needed to find explanations and
quantify the performance variance.

4 Visualization of discriminator outputs

Figure 3: PatchGAN outputs for an
example real and fake image.

The LSGAN variant of our PatchGAN aims to output scores
close to 1 for real data (F4 sim) and 0 for fake data (cGAN’s F4
prediction). The PatchGAN outputs a n×n matrix, where each
entry is the discriminator score for a specific N ×N patch of
the original image. Here, we visualize the n× n discriminator
output; here, n = 30. We select the PatchGAN corresponding
to the optimal generator model selected from the description in
Sect. 2.2. It is then applied to the F4 sim, and cGAN prediction
maps from Fig. 1, and the output matrices are compared in
Fig. 3. As seen, output scores for F4 sim are closer to one,
whereas output scores for F4 cGAN are closer to zero, which
indicates that the PatchGAN outputs are non-random and a strong indication that it has forced the
generator to emulate plausible results. Additionally, each entry in the matrix corresponds to a patch
in the image, and the figure shows that the output scores have some spatial correlation, which can be
explored further to gain more insights.

5 Conclusion and future work

We modified the traditional pix2pix cGAN by (a) incorporating a frequency-based loss function with
the traditional L1 loss used with the cGAN loss and (b) using a new mapping where the image from
the input domain is mapped to the pixel-wise ratio of the images from the target and the input domain,
instead of the target domain directly. Due to our modifications, the cGAN predictions successfully
reproduced key expected features in the images from the target domain (in our case, modifications to
Einstein’s gravity) despite the minor differences between the input and target domains. A difference
of ∼ 20− 25% in the power spectrum of the density fields between GR and f(R) was reduced to
∼ 2% using our cGAN. The density histograms revealed that the cGAN well reproduces the densities
in f(R) for all ranges of densities except for a few regions with extremely low or high densities. Since
L1 loss weights all pixels equally, future work could involve using a weighted L1 loss measure or its
equivalent in the frequency domain for improved synthesizing capabilities, applying the model on
different f(R) gravity models, and testing model generalization to different resolutions and redshifts.
We also aim to trace back discriminator outputs to patches in the density maps to interpret the learning
process of the discriminator.

This work presents a step towards replacing computationally expensive simulations (such as MG
simulations) with deep-learning-based emulators to eliminate bottlenecks.

Acknowledgments and Disclosure of Funding

The authors acknowledge insightful discussions with Cheng-Zong Ruan, Baojiu Li, and Carolina
Cuesta-Lazaro. SB is supported by the UK Research and Innovation (UKRI) Future Leaders Fellow-
ship [grant number MR/V023381/1].

1We have used the ptflops package, available at https://github.com/sovrasov/flops-counter.
pytorch

5

https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch


References
[1] Sean M. Carroll, Antonio de Felice, Vikram Duvvuri, Damien A. Easson, Mark Trodden, and

Michael S. Turner. Cosmology of generalized modified gravity models. Physical Review D, 71
(6):063513, March 2005. doi: 10.1103/PhysRevD.71.063513.

[2] Matteo Cataneo, Cora Uhlemann, Christian Arnold, Alex Gough, Baojiu Li, and Catherine
Heymans. The matter density PDF for modified gravity and dark energy with Large Deviations
Theory. Monthly Notices of the RAS, 513(2):1623–1641, June 2022. doi: 10.1093/mnras/
stac904.

[3] Marius C. Cautun and Rien van de Weygaert. The DTFE public software: The Delaunay
Tessellation Field Estimator code. arXiv e-prints, art. arXiv:1105.0370, May 2011.

[4] Jonathan Chardin, Grégoire Uhlrich, Dominique Aubert, Nicolas Deparis, Nicolas Gillet, Pierre
Ocvirk, and Joseph Lewis. A deep learning model to emulate simulations of cosmic reionization.
Monthly Notices of the RAS, 490(1):1055–1065, November 2019. doi: 10.1093/mnras/stz2605.

[5] Timothy Clifton, Pedro G. Ferreira, Antonio Padilla, and Constantinos Skordis. Modified
gravity and cosmology. Physics Reports, 513(1):1–189, March 2012. doi: 10.1016/j.physrep.
2012.01.001.

[6] Antonino Del Popolo and Morgan Le Delliou. Small Scale Problems of the ΛCDM Model: A
Short Review. Galaxies, 5(1):17, February 2017. doi: 10.3390/galaxies5010017.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.
neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[8] César Hernández-Aguayo, Cheng-Zong Ruan, Baojiu Li, Christian Arnold, Carlton M. Baugh,
Anatoly Klypin, and Francisco Prada. Fast full n-body simulations of generic modified gravity:
derivative coupling models. Journal of Cosmology and Astroparticle Physics, 2022(01):048,
jan 2022. doi: 10.1088/1475-7516/2022/01/048. URL https://dx.doi.org/10.1088/
1475-7516/2022/01/048.

[9] Wayne Hu and Ignacy Sawicki. Models of f(r) cosmic acceleration that evade solar system
tests. Phys. Rev. D, 76:064004, Sep 2007. doi: 10.1103/PhysRevD.76.064004. URL https:
//link.aps.org/doi/10.1103/PhysRevD.76.064004.

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on, 2017.

[11] Liming Jiang, Bo Dai, Wayne Wu, and Chen Change Loy. Focal frequency loss for image
reconstruction and synthesis. In ICCV, 2021.

[12] Anatoly Klypin and Francisco Prada. Dark matter statistics for large galaxy catalogues: power
spectra and covariance matrices. Monthly Notices of the Royal Astronomical Society, 478
(4):4602–4621, 06 2018. ISSN 0035-8711. doi: 10.1093/mnras/sty1340. URL https:
//doi.org/10.1093/mnras/sty1340.

[13] Baojiu Li, Wojciech A. Hellwing, Kazuya Koyama, Gong-Bo Zhao, Elise Jennings, and
Carlton M. Baugh. The non-linear matter and velocity power spectra in f(R) gravity. Monthly
Notices of the Royal Astronomical Society, 428(1):743–755, 10 2012. ISSN 0035-8711. doi:
10.1093/mnras/sts072. URL https://doi.org/10.1093/mnras/sts072.

[14] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and Stephen Paul
Smolley. Least Squares Generative Adversarial Networks. arXiv e-prints, art. arXiv:1611.04076,
November 2016. doi: 10.48550/arXiv.1611.04076.

[15] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets. arXiv e-prints,
art. arXiv:1411.1784, November 2014.

6

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://dx.doi.org/10.1088/1475-7516/2022/01/048
https://dx.doi.org/10.1088/1475-7516/2022/01/048
https://link.aps.org/doi/10.1103/PhysRevD.76.064004
https://link.aps.org/doi/10.1103/PhysRevD.76.064004
https://doi.org/10.1093/mnras/sty1340
https://doi.org/10.1093/mnras/sty1340
https://doi.org/10.1093/mnras/sts072


[16] Mustafa Mustafa, Deborah Bard, Wahid Bhimji, Zarija Lukić, Rami Al-Rfou, and Jan M. Kra-
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