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Abstract

Physics-informed neural networks (PINNs) seamlessly integrate physical laws
into machine learning models, enabling accurate simulations while preserving
the underlying physics. However, PINNs are still suboptimal in approximating
discontinuities in the form of shocks compared to the traditional numerical shock-
capturing methods. This paper proposes a framework to approximate shocks
arising in dynamic porous media flows by weighting the governing nonlinear
partial differential equation (PDE) with a physical gradient-based term in the
loss function. The applicability of the proposed framework is investigated on
the forward problem of immiscible two-phase fluid transport in porous media
governed by a nonlinear first-order hyperbolic Buckley–Leverett PDE. Particularly,
convex and non-convex flux functions are studied involving shocks and rarefaction.
The results demonstrate that the proposed framework consistently learns accurate
approximations containing shocks and rarefaction by weighting the underlying PDE
with a physical gradient term and outperforms state-of-the-art artificial viscosity-
based neural network methods to capture shocks on the standard L2-norm metric.

1 Introduction

Porous media flows are ubiquitous in physical sciences and manifest in diverse industrial applications
[1]. Understanding and simulating these flows is essential for optimizing design, predicting transport
phenomena, and addressing environmental challenges. Nonlinear partial differential equations
(PDEs) are often used to model and simulate these flows [2, 3]. The governing nonlinear equations
are typically simulated using numerical methods such as the essentially non-oscillatory method [4],
weighted essentially non-oscillatory method [5], and the discontinuous Galerkin method [6], among
others. These methods ensure a precise and oscillation-free solution of shock waves and analogous
discontinuities, a crucial aspect in dealing with hyperbolic equations for porous media flows. However,
the surge in machine learning techniques has sparked significant interest in leveraging data-driven
[7, 8] and physics-based [9, 10] methods for more efficient and accurate simulations for porous media
flows.

Physics-informed neural network (PINN) [11] has emerged as a noteworthy method in the context
of physics-based methods [12] and has gained considerable attention, particularly for its efficacy in
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solving complex problems within diverse engineering domains such as fluids [13], materials [14], and
structures[15]. However, when applied to porous media flows, a notable challenge arises due to the
presence of shock waves. Vanilla PINN faces difficulties in accurately capturing shocks, presenting a
significant obstacle in its application to these problems [9]. Various modifications of vanilla PINN
have been proposed to capture shocks efficiently. Infusing thermodynamics with PINN [16] was
proposed for inverse problems. The inverse problem was also simulated in [17] in the context of
supersonic flows. In another study, Euler equations involving shock waves in high-gradient regions
were simulated by appropriately clustering training data points and reducing error propagation across
the entire domain [18]. A similar study was carried out in [19] by subdividing the computational
domain into smaller subdomains and employing a different neural network for each subdomain to
address Burgers and Euler equations. Recently, [10] proposed adaptive artificial viscosity-based
strategies to solve porous media flows governed by Buckley-Leverett equations.

In contrast, in this work, we do not use artificial viscosity to change the underlying hyperbolic PDE
into a parabolic PDE [20]. Instead, we follow the work presented in [21] and propose to weight the
governing PDE in the loss function with a physics-based term. In [21], discontinuities in the form of
shocks were approximated for the inviscid Burgers equation and Sod and Lax problems for the Euler
equation. We use the method therein and propose to resolve the paradoxical challenges associated
with shock capturing in porous media flows with PINNs. Primarily, the method prioritizes training
in smooth regions while diminishing the training influence in highly compressed regions associated
with shock waves. This approach allows for a precise and sharp shock capture. We implement this
strategy by introducing a positive weight related to compression into the governing equations, thereby
adjusting the high gradients at specific spatial locations. For the rest of this paper, we refer to this
method as PINN-WE, as proposed in [21].

In this paper, we explore using the PINN-WE approach to address the forward problem of nonlinear
two-phase transport within porous media. In particular, we simulate the nonlinear Buckley-Leverett
equation with convex and non-convex flux functions, whose solutions contain shocks and rarefaction.
The rest of the paper is structured as follows: Section 2 presents the PINN-WE framework, our tool
for solving the underlying PDEs. Section 3 presents the application of PINN-WE on the Buckley-
Leverett equation modeling the porous media flow. Finally, the conclusions drawn from the paper are
collated in Section 4.

2 Method

The presented method, PINN-WE, is based on a minor modification of the PINN loss function. Hence,
we first describe PINN and its corresponding loss function in brief. We define an abstract operator
D governing the PDE, D[u(x, t)] = 0, along with an abstract operator B governing the initial and
boundary conditions, B[u(x, t)] = 0. Here, u ∈ R denotes the unknown physical quantity of interest
and x ∈ R, and t ∈ R represent the space and time variables, respectively.

PINNs approximate the solution of the PDE by minimizing D along with B simultaneously. The
operator D acts as a physics-informed component, where no data of the solutions is known or
available. The operator B acts as a data part where initial and boundary conditions act as data, which
are known a priori for a forward problem to be well-posed. The data part fits the provided data, and
the physics part regularizes the neural network’s approximation towards the optimal solution from
the possible envelope of solutions. The loss function of PINNs is defined as,

LPINN = ||D[u(x, t)]||2 + ||B[u(x, t)]||2 (1)

The physics and data parts could be weighted through several strategies, as discussed in the review
paper [22]. In practice, these methods have shown tremendous success. However, we employ
PINN-WE to address the challenges of capturing shocks in porous media flow. For PINN-WE, the
physics-based term is weighted with λ defined as,

λ =
1

ϵ2(|∇ · u| − ∇ · u) + 1
(2)

where, ϵ2 is a hyperparameter, and ∇ · u represents the divergence of u. Subsequently, the physics
based term becomes 1

ϵ2(|∇·u|−∇·u)+1 ||D[u(x, t)]||2. In addition, a hyperparameter ϵ1 is also weighted
with the data term to make the loss function more generic and expressive. The loss function for
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Table 1: L2 relative percent error in simulating the considered cases of the Buckley-Leverett equation

Method Convex Non-Convex
M = 0.5

Non-Convex
M = 1

Non-Convex
M = 2

Non-Convex
M = 10

PINN-WE 1.05 2.96 4.70 0.17 1.66
Learnable global AV [10] 3.05 6.72 7.63 6.88 7.52
Parametric AV map [10] 3.33 6.93 6.42 5.94 7.66

Residual-based AV map [10] 3.34 8.70 10.04 8.33 7.19
Nonadaptive global AV [10] 4.50 6.55 7.23 7.05 8.75

PINN-WE is defined as follows,

LPINN-WE =
1

ϵ2(|∇ · u| − ∇ · u) + 1
||D[u(x, t)]||2 + ϵ1||B[u(x, t)]||2 (3)

It is evident that equation 3 reduces to equation 1 for ϵ2 = 0 and ϵ1 = 1, making LPINN-WE as special
case of weighted LPINN. Traditionally, in PINN literature, the hyperparameter choice of λ and ϵ1
is made as a pre-defined constant [23, 24] or are trained adaptively to modulate the influence of
distinct components within the loss function. It is done to emphasize that the points located within
the interior and those on boundaries exhibit varying degrees of significance. A common practice
involves assigning greater significance to points located on boundaries.

For each distinct component of the loss function, traditional PINN-based approaches involve comput-
ing the average impact of each computational point on the overall loss. This approach is appropriate
for scenarios characterized by smooth solutions but may not be effective for solutions with shocks
and discontinuities. Consequently, the proposed framework alleviates the impact of points located
within highly compressible regions by incorporating a local positive physics-based gradient weight
(λ) into the governing equations to capture shocks efficiently.

3 Numerical Experiments

The Buckley-Leverett PDE is a mathematical representation for characterizing the displacement of
immiscible and incompressible two-phase flow within porous media [25]. This one-dimensional
nonlinear hyperbolic transport equation is expressed as,

D[u(x, t)] :=
∂u

∂t
+

∂fw(u)

∂x
= 0 (4)

where fw(u) is the flux function and x, t ∈ [0, 1], and u represents water saturation for instance in
a water-oil medium. Different flux functions result in diverse types of waves within the solution.
Additionally, we employ uniform initial and boundary conditions for all the numerical experiments
representing the injection of water at one end of a 1-D reservoir filled with oil,

B[u(x, t)] := u(x, t) =

{
0, ∀x,∧t = 0,

1, x = 0,∧t > 0
(5)

Five numerical experiments are performed, encompassing one convex and four non-convex flux
functions. The neural network has two inputs x, t and one output u. 8 hidden layers with 20 neurons
each and tanh activation function with L-BFGS-B [26] optimizer is used to train the network. Initial
trainable parameters are generated through Xavier initialization [27]. For all cases, 300 random
points on initial time and boundary with 10000 collocation points are used. A comparison for all
experiments is also presented with state-of-the-art artificial viscosity (AV) based methods [10]. The
convex flux function for the first numerical experiment is fw(u) = u2. For the next four experiments,
a non-convex flux function is taken depending on a parameter M as,

fw(u) =
u2

u2 + (1−u)2

M

(6)

Equation 4- 6 represent a typical scenario for the Buckley-Leverett problem in porous media flow.
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Figure 1: Comparison of the predicted solution with the exact solution for flux function (a) convex at
t = 0.5. At t = 0.4 for non-convex (b) M = 0.5 (c) M = 1 (d) M = 2 (e) M = 10.

Table 2: Hyperparameters

Convex Non-Convex
M = 0.5

Non-Convex
M = 1

Non-Convex
M = 2

Non-Convex
M = 10

ϵ1 0.1 10 1 1 0.1
ϵ2 0.5 0.1 0.1 0.1 0.1

For the non-convex flow, we chose four distinct values of M as 0.5, 1, 2, and 10. The analytical
solution to this problem comprises both a shock and a rarefaction wave and is defined as follows:

u(x, t) =


0, x

t > f ′
w(u

∗)

u
(
x
t

)
, f ′

w(u
∗) ≥ x

t ≥ f ′
w(u = 1)

1, f ′
w(u = 1) ≥ x

t

(7)

Where, u* represents the shock location, which is determined by the Rankine-Hugoniot condition

f ′
w(u

∗) =
fw(u

∗)− fw(u)|u=0

u∗ − u|u=0

Additionally, u(xt ) is defined for x
t ≤ f ′

w(u
∗) as u

(
x
t

)
= (f ′

w)
−1(xt ). Due to its self-similarity, the

analytical solution 7 depends on just one governing parameter, the similarity variable x
t .

The predicted solution for all five experiments and the analytical solution are presented in Fig. 1.
In addition, Table 1 presents a comparison for the L2 relative percent error with state-of-the-art
AV-based methods [10]. Finally, Table 2 presents the choice of hyperparameters ϵ1 and ϵ2 used to
train the model.

4 Conclusions

We proposed a framework to address the challenge of accurately approximating shocks in dynamic
porous media flows using PINNs. By introducing a physical gradient-based term in the loss function,
the framework significantly improves the performance of PINNs in capturing discontinuities. We
applied the framework to the forward problem of immiscible two-phase fluid transport in porous
media, considering both convex and non-convex flux functions with shocks and rarefaction. The
results consistently demonstrate the effectiveness of our approach in learning precise approximations
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for several non-convex cases governing distinct shock scenarios. The framework also outperformed
the state-of-the-art artificial viscosity-based neural network methods for the Buckley-Leverett PDE
in approximating the discontinuous solution. The results motivate the utilization of the proposed
methodology in simulating intricate physical phenomena involving shocks, thereby broadening their
potential utility across various scenarios.
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