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Abstract

We propose a new method based on machine learning to play the devil’s advo-
cate and investigate the impact of unknown systematic effects in a quantitative
way. This method proceeds by reversing the measurement process and using the
physics results to interpret systematic effects under the Standard Model hypothe-
sis. We explore this idea through a combination of gradient descent and optimisa-
tion techniques, its application and potentiality is illustrated with an example that
studies the branching fraction measurement of a heavy-flavour decay. We find that
the size of a hypothetical hidden systematic uncertainty strongly depends on the
kinematic overlap between the signal and normalisation channel.

1 Introduction

Addressing hidden systematic effects in physics, such as ”unknown-unknowns,” is challenging. In-
dependent confirmations, like the Higgs boson discovery by ATLAS and CMS, enhance confidence,
but future confirmations might be financially restrictive due to collaboration size and experiment
complexity. The discovery beyond the Standard Model (SM) aims to resolve its open questions and
demands rigorous validation, especially for unique experiments with no direct counterparts. Typ-
ically, validation is qualitative, based on control channel tests or observing multiple new physics
signatures. Our paper proposes a method for quantitative assessment, employing deep learning to
challenge deviations from the SM, effectively treating observed measurements as potential experi-
mental effects within SM parameters. Concretely, one can consider the set of measurements of the
experiment as a system of equations:

F(η̃,Ωi) = Mi =⇒


F(η̃,Ω1) = M1

F(η̃,Ω2) = M2

· · ·
, (1)

where F represents the measurement process, η̃ are parameters in common to all measurements,
such as the detector response, and Ωi are parameters specific to a particular measurement, such as
theoretical parameters.

When a measurement deviates from its SM prediction, it is tempting to interpret the observed devia-
tion as a sign of physics beyond the SM. However, such an important claim must be supported by an
equally strong confidence in the understanding of the experimental apparatus. The idea developed
in this paper reverses the classical reasoning and, instead of attributing the observed deviation to
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physics beyond the SM, it starts from the SM hypothesis by fixing the theory parameters to their
predicted values, uses the simulation to model F and uses a neural network to find possible values
of η̃ that reproduce the observed measurements Mi. In other words, it tries to find possible detector
effects that can cause the observed deviation.

As demonstrated, these effects could represent mismodellings of detector efficiency but can also
encompass broader analysis assumptions. Our method’s strength lies in generating falsifiable mis-
modelling predictions via parameter values. Such values can embody either ”high-level” data, like
particle kinematics which demand specific tuning, or ”low-level” metrics, such as material bud-
get, offering broader applicability but challenging real-time tuning. Recent trends leverage ma-
chine learning for systematic uncertainties, mainly focusing on optimizing statistical inference or
integrating known systematic effects. Our method, however, seeks to quantify unacknowledged or
undervalued systematic effects, ensuring a rigorous control vital for authentic scientific discoveries.

We apply this method to a simple toy example of a branching fraction measurement of a particle
decay and restrict our attention to a potential mis-modelling of the efficiency. Such measurements
are often normalised to a decay mode with a known branching fraction and ideally the same final
state as the signal, which cancels systematic uncertainties due to efficiency mismodelling to a high
degree. It is therefore an ideal testing ground for our approach.

2 Methodology

Taking the example laid out in Eq. 1, we consider a set of measurements Mi, where one is the
measurement of interest and the others are control channels which are used to validate the analysis
and to check for systematic uncertainties. For each of these measurements there are some observed
candidates Ni and an associated efficiency ei, so that Mi = Ni

ei
. The candidates of each channel

are characterised by a set of variables (features) such as the kinematics of the produced particles.
Differences in these distributions, together with a detection efficiency which can depend on the same
kinematic variables, can result in different total efficiencies between the signal and control channels.

We describe possible mismodelling of the efficiency with a weighting function w(x), which depends
on the kinematic variables x of the event. Values of w(x) = 1 correspond to a perfect modelling of
the efficiency, while values below/above unity correspond to efficiency under/over estimated. The
key idea is that, while the detector response depends entirely on the kinematics of the single event,
the total signal/control channel efficiency can suffer from different biases once integrated over the
individual kinematic distribution of each decay channel. We can then define the true total efficiency
for a given channel i as

ei = Ex∼p(x|i) [w(x)× ϵ̂(x)] , (2)

where ϵ̂(x) is the per-event estimated efficiency in the experiment and the expectation value indicates
the weighted average over the kinematic distribution of each decay channel p(x|i). Since our goal is
to study the impact of possible mismodelling of the efficiency in a given set of measurements we can
safely assume ϵ̂(x) = 1 without loss of generality. This simplifies the expression of the per-channel
efficiency to

ei = Ex∼p(x|i) [w(x)] ≡
1

ni

ni∑
k=1

w(xk,i) , (3)

where we approximated the expectation value with a sum over a large number ni of simulated events
{xk}i, where i labels the different decay channels.

Control channels provide important constraints on how well the efficiency is estimated. They are
typically selected with topology and kinematics similar to the signal decay mode in order to max-
imise the phase space overlap between channels. The result of the measurements obtained on such
control channels can then be compared to known reference values, e.g. existing precise measure-
ments from other experiments or clean SM predictions. If a good agreement is found, a certain level
of confidence can be ascribed to the estimation of the efficiency, at least for what concerns the kine-
matic regions populated by the control channels. The requirement that measurements performed on
the control channels must be compatible with a certain reference can be formulated as

Mi ∈ [M low
i ; Mhigh

i ] (4)
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Figure 1: Left: Schematic view of the DL Advocate algorithm. The algorithm is formed by two
parts: the output of a neural network (NN) is passed to a linear programming (LP) solver which
returns the final weight for each event. Center: maximum allowed bias obtained on P → V C
branching ratio by running the DL Advocate algorithm with the three studied sets of features at
different masses. Right: Expected relative bias on differential branching fraction measurement for
the P → XC control channel as function of the opening angle. The algorithm has been trained with
a signal of m̃V = 0.3, while the result for the three tested configurations is shown with different
colours.

which reduces to
ei ∈ [V low

i ; V high
i ] , (5)

once we restrict the attention to the sole role of the efficiency in the measurement. Here V low
i and

V high
i are the values that bound the efficiency for the control measurements to pass scrutiny.

The goal of this paper is to find regions of the kinematic space x⃗ where a mismodelling of the
efficiency can have a significant impact in the signal measurement while the effect on the control
channels remains within the constraints of Eq. 5. Given these constraints, the intuition is that this
problem can be thought as a classification task between the signal and control channels using the
kinematic variables provided in the space x⃗.

2.1 DL Advocate algorithm

The algorithm is formed of two main parts, as shown schematically in Fig. 1. The first is a fully
connected neural network which resembles a multi-classification algorithm. The inputs are a set
of features x whereas the output hj is a classification score for each decay hypothesis. The last
layer of the NN is normalised with a softmax activation function which enforce hj(x) ≥ 0 and∑

j hj(x) = 1. Details on the technical implementation of the neural network are given in [1].

The second part of the algorithm consists of a linear combination of the NN output, also referred to
as linear programming (LP), which defines the final per-event weight

w(x) =
∑
j

αjhj(x) with αj ≥ 0 . (6)

Combining this with Eq. 3 and moving to a vectorial notation we can express the total per-channel
efficiency as

e⃗ = Hα⃗ , (7)
where we have introduced the H matrix which is defined as

Hi,j =
1

ni

∑
k

hj(xk,i) . (8)

In such a scenario H takes the form of the identity matrix and αj can be individually chosen to
satisfy all possible combination of efficiencies, i.e. we can choose α(j|j∈C) = 1 for all control
channels C in order to perfectly satisfy their efficiency constraints, and arbitrarily move α(j|j=s) for
the signal channel s to get any possible values for the signal efficiency es.

In general, however, the H matrix will have non-diagonal terms that correlate the efficiency of the
different decay channels. The measurements carried out on the control channels, therefore, provide
non trivial constraints on the signal efficiency.
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2.2 Optimisation procedure

The goal of this algorithm part is to find the solution that maximises possible shifts in the signal
efficiency while maintaining the control measurements within their allowed range, as defined in
Eqs. 4 and 5. This is achieved with an iterative procedure:

i) the NN is pretrained as a simple classifier between channels;

ii) for a given θ we derive the matrix H and comput the optimal values of α⃗;

iii) with α⃗, the NN parameters are updated to improve the solution.

Details of the algorithm are provided in [1].

3 A particle physics example: measurement of a branching fraction

We illustrate the use of the DL Advocate method with the example of a branching fraction measure-
ment. Branching fractions are typically measured as a ratios of a given signal decay channel with
respect to a normalisation channel

Bsig =
Nsig

Nnorm
· enorm

esig
· Bnorm (9)

where B is the branching fraction, N is the observed yield and e is the detector efficiency. It is
evident from Eq. 9 that a problem in the efficiency estimation would unavoidably lead to an incorrect
determination of the branching ratio.

For this example, we consider the branching fraction measurement of a hypothetical decay of the
type P → V C, where V → AB is a hypothetical intermediate resonance decaying into two given
particles A and B, and C is a companion final-state particle. Branching ratios are typically nor-
malised relative to decays with similar topology, which we denote here with P → XC channel,
with X → AB, where the branching ratios P → XC and X → AB are assumed to be well
known. For instance the Particle Data Group (PDG) lists several branching fractions for various
systems, some of which have uncertainties as low as 3% [2]. In addition to the normalisation it-
self, crosschecks involving other control channels with well known branching fractions are often
performed during experimental analyses. In the following, we consider the existence of a second
control channel denoted with P → Y C with Y → AB.

With the help of the method described, we can now quantitatively define the observed bias in each
decay mode as the deviation of its integrated efficiency with respect to the hypothesis of perfect
efficiency modelling, i.e. (1 − ei). The maximum allowed shift on the determination of the signal
efficiency, and hence the signal branching ratio, obtained in the different tested configurations is
illustrated in Fig. 1 (center). We can draw the following conclusions:

• as expected, the lower the normalised signal mass m̃V is, the bigger the bias is allowed
to be; this is due to the large separation in the feature space between signal and control
channels, which allows a mismodelling of the efficiency that only affects the signal channel;

• vice versa, it is nearly impossible for signal with mass similar to the ones of the normalisa-
tion/control channels to suffer from uncontrolled systematic effects;

• in all cases, the set of variables that allows the largest bias is given by the combination
{max p, αAB}, which is natural being the one with the largest correlation with the mass.

Figure 1 (right) shows the bias expected for the different obtained solutions as function of the open-
ing angle of the considered control channel. The strong visible trend demonstrates that, assuming a
sufficient statistical precision, the systematic uncertainty postulated by the DL Advocate algorithm.

4 Summary

In summary, we have introduced a method to place quantitative bounds for hidden systematic effects
using machine learning.
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The result is based on using a fast simulation, but a definitive and reliable statement can only be
obtained by thoroughly examining all possible effects of the detector through a comprehensive sim-
ulation of the entire detector.

References
[1] A. Golutvin, A. Iniukhin, A. Mauri, P. Owen, N. Serra, and A. Ustyuzhanin. The DL advocate:

Playing the devil’s advocate with hidden systematic uncertainties. Eur. Phys. J. C, 83(779),
2023. doi: 10.1140/epjc/s10052-023-11925-w.

[2] R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022. doi: 10.1093/
ptep/ptac097.

5


