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Abstract

The radio astronomy community is adopting deep learning techniques to deal with
the huge data volumes expected from the next-generation of radio observatories.
Bayesian neural networks (BNNs) provide a principled way to model uncertainty
in the predictions made by deep learning models and will play an important role in
extracting well-calibrated uncertainty estimates from the outputs of these models.
However, most commonly used approximate Bayesian inference techniques such
as variational inference and MCMC-based algorithms experience a "cold posterior
effect (CPE)", according to which the posterior must be down-weighted in order
to get good predictive performance. The CPE has been linked to several factors
such as data augmentation or dataset curation leading to a misspecified likelihood
and prior misspecification. In this work we use MCMC sampling to show that a
Gaussian parametric family is a poor variational approximation to the true posterior
and gives rise to the CPE previously observed in morphological classification of
radio galaxies using variational inference based BNNs.

1 Introduction

The next-generation of radio astronomy facilities such as the Square Kilometre Array (SKA) will
produce huge volumes of data and the use of deep learning (DL) methods is inevitable given the ex-
pected data volumes [1, 2]. Modern astrophysics is driven by population analyses and any automated
classification pipeline should produce well-calibrated uncertainty estimates that quantify the model
uncertainty introduced in the results. In this work we consider the morphological classification of
radio galaxies and discuss the challenges faced while implementing Bayesian Convolutional Neural
Networks (CNNs) for their classification.

While several works have looked at classifying radio galaxies with deep learning [e.g. 3, 4, 5, 6, 7],
with the exception of [8] and [9], little work has been done on understanding the degree of confidence
with which CNN models predict the class of individual radio galaxies. In general, it has been suggested
that deep learning models produce overconfident predictions [10] and provide no uncertainty estimates,
which are essential for scientific application of these models. On the other hand, probabilistic models
such as Bayesian neural networks (BNNs) provide a principled way to model uncertainty [11, 12] by
specifying priors, P (θ), over the neural network parameters, θ, and learning the posterior distribution,
P (θ|D), over those parameters, where D is the data.

Recovering this posterior distribution directly is intractable for neural networks. Several techniques
have been developed to approximate Bayesian inference for neural networks among which Variational
Inference (VI) and Monte Carlo (MC) Dropout methods are most commonly used. VI assumes an
approximate posterior from a family of tractable distributions, and converts the inference problem
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into an optimisation problem [13, 14, 15]. The model learns the parameters of the distributions by
minimising an Evidence Lower Bound Objective (ELBO) function.

Another easily implemented Bayesian approximation is MC Dropout, which learns a distribution over
the network outputs by setting randomly selected weights of the network to zero with probability, p
[16]. MC dropout can be considered an approximation to VI, where the variational approximation is
a Bernoulli distribution. Although a convenient technique, this method lacks flexibility and does not
fully capture the uncertainty in model predictions, especially under covariate shift where the data
distributions at training and test time are not identically distributed [17].

However, there are several challenges in implementing BNNs in practice. Several published works
have reported that their BNNs experience a "cold posterior effect (CPE)", according to which the
posterior needs to be down-weighted or tempered with a temperature term, T ≤ 1, in order to get
good predictive performance [18]:

P (θ|D) ∝ (P (D|θ)P (θ))1/T . (1)

Previous work has shown that VI based BNN models experience a CPE when classifying radio
galaxies [9]. The choice of variational approximation limits the variational posterior to specific
regions of the true posterior density space and it is difficult to evaluate how good the variational
approximation is without having access to the true posterior [19]. Several hypothesis have been put
forward to explain the CPE including likelihood, prior and model misspecification [18, 20, 21].

In this work we demonstrate that, for radio galaxy classification, using MCMC to recover posterior
distributions on neural network parameters suggests that the "cold posterior effect" previously
observed with VI models is due to model misspecification arising from poor variational posterior
approximations. We also compare model performance for different approximate Bayesian inference
methods including VI and MC Dropout and present preliminary uncertainty calibration results.

2 MCMC for Neural Networks

MCMC methods are a class of algorithms used to obtain samples from probability distributions
which are otherwise intractable or do not have a full analytical description. The first application
of MCMC to neural networks was proposed by [22], who introduced Hamiltonian Monte Carlo
(HMC) from quantum chromodynamics to the general statistics literature. However, it wasn’t until
[23] introduced Stochastic Gradient Langevin Dynamics (SGLD), that MCMC for neural networks
became feasible for large datasets. More recently, [24] have revisited HMC and proposed novel data
splitting techniques to make it work with large datasets. We use the HMC algorithm in our work.

Hamiltonian Monte Carlo HMC simulates the path of a particle traversing the negative posterior
density space using Hamiltonian dynamics [25, 26, 27]. To apply HMC to deep learning, the neural
network parameter space is augmented by specifying an additional momentum variable, m, for
each parameter, θ. Therefore, for a d-dimensional parameter space, the augmented parameter space
contains 2d dimensions. We can then define a log joint density as follows:

log[p(θ,m)] = log[p(θ|D)p(m)] . (2)

Hamiltonian dynamics allows us to travel on the contours defined by the joint density of the position
and momentum variables, also known as the phase space. The Hamiltonian function is given by:

H(θ,m) = U(θ) +K(m) = constant, (3)

where U(θ) is the potential energy and K(m) is the kinetic energy. The potential energy is defined to
be the negative log posterior probability and the kinetic energy is usually assumed to be quadratic in
nature and of the form K(m) = (1/2)mTM−1m, where M is a positive-definite mass matrix. This
corresponds to the negative probability density of a zero-mean Gaussian, p(m) = N (m|0,M), with
covariance matrix, M, which is usually assumed to be the identity matrix.

The partial derivatives of the Hamiltonian describe how the system evolves with time. In order to
solve the partial differential equations using computers, we need to discretise the time, t, of the
dynamical simulation using a step-size, ϵ. The state of the system can then be computed iteratively at
times ϵ, 2ϵ, 3ϵ... and so on, starting at time zero upto a specified number of steps, L. The leapfrog
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integrator is used to solve the system of partial differential equations. Two hyperparameters, the
step-size, ϵ, and the number of leapfrog steps, L, together determine the trajectory length of the
simulation. The partial derivative of the potential energy with respect to the position, ∂U/∂θ, can be
calculated using the automatic differentiation capabilities of most standard neural network libraries.

In each iteration of the HMC algorithm, new momentum values are sampled from Gaussian distribu-
tions, followed by simulating the trajectory of the particles according to Hamiltonian dynamics for L
steps using the leapfrog integrator with step-size ϵ. At the end of the trajectory, the final position and
momentum variables, (θ∗,m∗), are accepted based on a Metropolis-Hastings accept/reject criterion
that evaluates the Hamiltonian for the proposed parameters and the previous parameters.

3 Experimental Setup

Data The MiraBest dataset used in this work consists of 1256 images of radio galaxies of 150× 150
pixels pre-processed to be used specifically for deep learning tasks [28]. The galaxies are labelled
using the FRI and FRII morphological types based on the definition of [29] and further divided into
their subtypes. In addition to labelling the sources as FRI, FRII and their subtypes, each source is also
flagged as ‘Confident’ or ‘Uncertain’ to indicate the human classifiers’ confidence while labelling the
dataset. In this work we use the MiraBest Confident subset and consider only the binary FRI/FRII
classification. The training and validation sets are created by splitting the predefined training data
into a ratio of 80:20. The final split consists of 584 training samples, 145 validation samples, and 104
withheld test samples. No data augmentation is used.

Architecture We use an expanded LeNet-5 architecture with two additional convolutional layers with
26 and 32 channels, respectively, to be consistent with the literature on using BNNs for classifying
the MiraBest dataset [9]. The model has 232, 444 parameters in total.

MCMC Inference We use the HAMILTORCH package2 developed by [24] for scaling HMC to large
datasets. Using their HMC sampler, we set up two HMC chains of 200, 000 steps using different
random seeds and run it on the MiraBest Confident dataset. We use a step size of ϵ = 10−4 and set
the number of leapfrog steps to L = 50. We specify a Gaussian prior over the network parameters
and evaluate different prior widths, σ = {1, 10−1, 10−2, 10−3}, using the validation data set. We
find that σ = 10−1 results in the best predictive performance and consequently use it to define the
prior width for all weights and biases of the neural network in our experiments. A burn-in of 20, 000
samples is discarded. To compute the final posteriors we thin the chains by a factor of 1000 to reduce
the autocorrelation in the samples and obtain 180 samples. A compute time of 150 hrs is required to
run the inference on two Nvidia A100 GPUs. The Gelman-Rubin diagnostic, R̂, is used to assess the
convergence of our HMC chains [30]. If R̂ ≈ 1 we consider the MCMC chains for that particular
parameter to have converged. While R̂ values for some parameters in the network are greater than
1, the final two neurons in the last layer of our network have R̂ ≤ 1. We also monitor the negative
log-likelihood and accuracy, which converge by the 100, 000th inference step.

Other models For the VI implementation we use a Gaussian variational approximation to the posterior
and consider different priors including Gaussian and Laplace distributions following [9]. The Laplace
prior provides optimal predictive performance and lowest uncertainty calibration error, however for
direct comparison to our HMC baseline we also consider a Gaussian prior with σ = 0.01. Results
are reported for a tempered VI posterior, with T = 0.01 in Table 1. For the MC Dropout model, a
dropout rate of 50% is implemented before the last layer of our neural network, which is standard for
CNNs [8, 16]. The network is trained for 150 epochs using the Adam optimser with a learning rate
of 10−3 and a weight decay of 10−4. We obtain 200 samples from VI and MC Dropout posterior
predictive distributions by passing each sample in the test set through the test loop 200 times. We use
the same optimiser hyperparameters as the MC Dropout training for our non-Bayesian CNN model.
A compute time of 12 mins is required to train the VI model on a single Nvidia A100 GPU.

Code for this work is available at https://github.com/devinamhn/RadioGalaxies-BNNs

2https://github.com/AdamCobb/hamiltorch
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Figure 1: The “cold posterior” effect (CPE) observed in VI models (solid blue line) persists inspite of
a PAC-Bayes correction term to account for model misspecification (red dashed line) when classi-
fying radio galaxies. Using samples from HMC, we demonstrate that using a Gaussian variational
distribution leads to a poor approximation to the posterior, giving rise to the CPE. Data are also shown
for MC Dropout (green dot-dashed line) and our non-Bayesian CNN (solid gray line) for comparison.

Table 1: Test error and class-wise expected uncertainty calibration error (cUCE) for predictive entropy
are reported for different BNNs for the MiraBest Confident dataset.

Model Error (%) % cUCE
Non-Bayesian CNN 3.33 ×
MC Dropout 3.85± 0.19 9.75
VI (Laplace prior) 10.58± 0.30 14.26
VI (Gaussian prior) 12.96± 0.33 30.05
HMC 6.73± 0.25 13.17

4 Results

Cold posterior effect Previous work on using VI for radio galaxy classification has shown that the
"cold posterior effect" (CPE) persists even when the learning strategy is modified to compensate
for model misspecification with a second order PAC-Bayes bound to improve the generalisation
performance of the network [9, 31], see Figure 1. We do not observe a CPE when we use samples
from our HMC inference to construct the posterior predictive distribution for classifying the MiraBest
dataset (orange dashed line in Figure 1). This suggests that using a Gaussian parametric family as
a variational approximation to the true posterior distribution is a poor assumption and leads to a
misspecified model, which gives rise to the CPE. In the general Bayesian DL literature, some authors
argue that CPE is mainly an artifact of data augmentation [20], while others have shown that data
augmentation is a sufficient but not necessary condition for CPE to be present [21]. We find that data
augmentation does not have a significant effect on our HMC and VI models.

Model performance The test error is calculated by taking an average of the predictions obtained using
the expected value of the posterior predictive distribution for each galaxy in the MiraBest Confident
test set for different models, see Table 1. No data augmentation is used during training/inference.
The non-Bayesian CNN and MC Dropout perform comparably in terms of test error. HMC is more
accurate than VI, but does not match the predictive performance of MC Dropout. We note that it is
not performance alone that is important for our application, but also the calibration of the posterior
uncertainties which will influence the scientific analysis performed using the catalogues generated
by DL pipelines. We have conducted preliminary uncertainty calibration experiments using the
64% credible intervals of the posterior predictive distributions to calculate the class-wise expected
Uncertainty Calibration Error (cUCE) values for the predictive entropy [9, 16, 32]. However, at this
stage we do not draw any strong conclusions from the uncertainty quantification experiments, which
will be considered more fully in our future work.

5 Conclusions

Using samples from HMC, we find that the cold posterior effect previously observed in the morpho-
logical classification of radio galaxies using variational inference arises from using a misspecified
parametric family to approximate the posterior. While MCMC does not provide the most compu-
tationally efficient framework for approximate Bayesian inference for neural networks, it produces
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asymptotically exact samples from the posterior which are useful for developing more accurate
approximate Bayesian inference techniques for the radio galaxy classification problem in future.
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