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Abstract

Foundation Industries (FIs) constitute glass, metals, cement, ceramics, bulk chem-
icals, paper, steel, etc. and provide crucial, foundational materials for a diverse
set of economically relevant industries: automobiles, machinery, construction,
household appliances, chemicals, etc. Reheating furnaces within the manufacturing
chain of FIs are energy-intensive. Accurate and real-time prediction of underlying
temperatures in reheating furnaces has the potential to reduce the overall heating
time, thereby controlling the energy consumption for achieving the Net-Zero goals
in FIs. In this paper, we cast this prediction as a regression task and explore neural
networks due to their inherent capability of being effective and efficient, given
adequate data. However, due to the infeasibility of achieving good-quality real
data in scenarios like reheating furnaces, classical Hottel’s zone method based
computational model has been used to generate data for model training. To further
enhance the Out-Of-Distribution generalization capability of the trained model,
we propose a Physics-Informed Neural Network (PINN) by incorporating prior
physical knowledge using a set of novel Energy-Balance regularizers.
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Figure 1: This figure is best viewed in color. Sub-figure (a) Illustration of a real-world furnace, and its subdivision
as different zones. Image courtesy: [1]. A darker shade of red indicates a higher temperature. Under normal
conditions, temperature increases towards the discharge end. Sub-figure (b) Illustration of incorporating zone
method based regularization to train a Physics-Informed Neural Network (PINN).

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.



1 Proposed Method

Introduction and Motivation: In this work, we tackle the key challenge of accurate and real-time
temperature prediction in reheating furnaces, which are the energy-intensive bottlenecks common
across the FIs. Available computational surrogate models based on Computational Fluid Dynamics
(CFD) [2, 3], Discrete Element Method (DEM) [4], CFD-DEM hybrids [5], Two Fluid Models
(TFM) [6], etc. incur expensive and time-consuming data acquisition, design, optimization, and high
inference times (of the order of tens of seconds, up to minutes). Deep Learning (DL) methods, on the
other hand, owing to their accuracy and their inherently faster inference times (often only in the order
of milliseconds), are suitable candidates for real-time prediction.

But unlike other industry settings, only a limited number of thermo-couples could be physically
deployed within furnaces, making it infeasible to get even near-optimal, large-scale, good-quality
real-world data to train a data-hungry DL model. The classical Hottel’s zone method [7, 8, 9, 10, 1]
provides an elegant way (and superior, as studied by Yuen and Takara [9]) to model the physical
phenomenon in high-temperature processes inside reheating furnaces.

Zone method for DL: In a real-world furnace as in Figure 1a, the release of combustion materials (by
burners, controlled via their firing rates) and movement of objects to be heated (slabs, or obstacles)
from the left to the right (discharge end, with higher temperature), causes energy and mass flow.
The zone method mathematically models this by dividing the furnace into a set of zones: i) G: Gas/
volume and ii) S: Surface (consisting of furnace walls fur and obstacle surfaces obs). The radiation
interchange (↼ indicates the direction of flow) among all possible pairs (i, j) of zones: Gas to Gas
(

↼

GiGj), Surface to Surface (
↼

SiSj), Surface to Gas (
↼

GiSj), and Gas to Surface (
↼

SiGj), can be
modeled along with a set of Energy-Balance (EB) equations.

Hu et al. [10] has proposed a computational model of the zone method, which though highly
accurate, is slower for real-time prediction. We use it, and simulate an offline, IID data set
XIID={(x(i),y(i))}Ni=1 for DL training, by following their algorithmic flow. The advantage of
this model is that the required input entities (e.g., ambient temperatures, set point temperatures, firing
rates, walk-interval) are readily available without dependency on the physical placement of sensors in
every relevant location where we want to collect data in the real-world.

We study the following two settings:

1. Input Setting 1 - Without previous temperatures in the input vector: Here, for time step
instance i, we set: x(i) = [fr(i)⊤, wi(i)⊤, sp(i)⊤]⊤, and
y(i) = [tG(i)⊤, tS fur(i)⊤, tS obs(i)⊤, fr(i+ 1)⊤]⊤.

2. Input Setting 2 - With previous temperatures in the input vector: Here, for time step
instance i, we set: x(i) = [fr(i)⊤, wi(i)⊤, sp(i)⊤, tG(i− 1)⊤, tS fur(i− 1)⊤, tS obs(i−
1)⊤]⊤, and
y(i) = [tG(i)⊤, tS fur(i)⊤, tS obs(i)⊤, fr(i+ 1)⊤]⊤.

Here, fr(i), wi(i), sp(i), tG(i), tS fur(i) and tS obs(i) are respectively the vectors containing
firing rates, walk-interval, set point temperatures, gas zone temperatures, surface zone temperatures
for furnace walls, and surface zone temperatures for obstacles for a time step i. Also, tG(i − 1),
tS fur(i− 1), and tS obs(i− 1) are respective vectors containing the corresponding temperatures
from the previous time step. fr(i+ 1) is a vector containing firing rates for the next time step.

Using XIID={(x(i),y(i))}Ni=1, we can estimate parameters θ of a Multi-Layer Perceptron (MLP)
model fθ(.) by training it to predict y(i) given x(i), for all i, as:

θ∗ ← argmin
θ

E(x(i),y(i))∈XIID
[||y(i) − fθ(x

(i))||22] (1)

Then, we can obtain the required values of temperatures by extracting them from fθ∗(x(i)).

Zone method based PINN: DL models are not naturally good at generalizing to Out-Of-Distribution
(OOD) instances [11]. In our context, such OOD data could belong to furnace configurations
(operating conditions) not seen during training. To tackle this, we propose employing a novel Physics-
Informed Neural Network (PINN) model [12] based on MLP. This is done by incorporating prior
physical knowledge based on the zone method using a set of our novel proposed Energy-Balance
regularizers.
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To explain our PINN (see Figure 1b), let us use eq(1) and denote: Lsup = E(x(i),y(i))∈XIID
[||y(i) −

fθ(x
(i))||22] as the standard supervised term. Then, the overall PINN loss is formulated as:

Ltotal = Lsup + λebvLebv + λebsLebs (2)

Here, λebv, λebs > 0 are hyper-parameters corresponding to Lebv and Lebs, such that
Lebv=||normalize(vg)||22 is our proposed regularizer term corresponding to the Energy-Balance
equations for the Volume zones (EBV) using the zone method. Similarly, Lebs=||normalize(vs)||22 is
our proposed regularizer term corresponding to the Energy-Balance equations for the Surface zones
(EBS). Normalizing an output vector of a neural network in a regression task is standard practice
for ensuring convergence. In our work, we use: normalize(v) = v/max(v), where max(v) is the
maximum value from among all components in v. We propose to represent vg and vs as:

vg = (g(g)arr + s(g)arr − 4gleave + hg) ∈ R|G|

vs = (s(s)arr + g(s)arr − sleave + hs) ∈ R|S|
(3)

Here, |G|/|S| denotes the number of Gas/ Surface zones. Intuitively, vg and vs are vector representa-
tives corresponding to Energy-Balance equations for gas and surface zones respectively.

Having discussed vg and vs, we now define the terms used to compute them. Let, g(g)arr ∈ R|G|

be a vector whose ith entry represents the amount of radiation arriving at the ith gas zone from all
the other gas zones, s(g)arr ∈ R|G|, a vector whose ith entry represents the amount of radiation
arriving at the ith gas zone from all the other surface zones, gleave ∈ R|G|, a vector whose ith entry
represents the amount of radiation leaving the ith gas zone, and hg ∈ R|G| a heat term. Also, let
Tg,j (or Tg) and Ts,j (or Ts) denote the jth gas and surface zone temperatures respectively. Then,
following EBV equations, the ith entries of g(g)arr, s(g)arr, gleave and hg can be computed as:

g(g)arr(i) =

|G|∑
j

↼

GiGjσT
4
g,j

s(g)arr(i) =

|S|∑
j

↼

GiSjσT
4
s,j

gleave(i) =

|Ng|∑
n

ag,n(Tg,i)kg,nσViT
4
g,i

hg(i) = −(Q̇conv)i + (Q̇fuel,net)i + (Q̇a)i + qi

(4)

Here, the constants (known apriori) (Q̇conv)i, (Q̇fuel,net)i, and (Q̇a)i respectively denote the con-
vection heat transfer, heat release due to input fuel, and thermal input from air/ oxygen. An enthalpy
vector q ∈ R|G| is computed using the flow-pattern obtained via polynomial curve fitting during
simulation. σ is the Stefan-Boltzmann constant, Vi is volume of ith gas zone.

Let, s(s)arr ∈ R|S|, be a vector whose ith entry represents the amount of radiation arriving at the ith

surface zone from all the other surface zones, g(s)arr ∈ R|S|, a vector whose ith entry represents
the amount of radiation arriving at the ith surface zone from all the other gas zones, sleave ∈ R|S|, a
vector whose ith entry represents the amount of radiation leaving the ith surface zone, and hs ∈ R|S|
a heat term. Then, following EBS equations, the ith entries of s(s)arr, g(s)arr, sleave and hs can be
computed as:

s(s)arr(i) =

|S|∑
j

↼

SiSjσT
4
s,j

g(s)arr(i) =

|G|∑
j

↼

SiGjσT
4
g,j

sleave(i) = AiϵiσT
4
s,i

hs(i) = Ai(q̇conv)i − Q̇s,i

(5)

For a surface zone i, the constants (known apriori) Ai(q̇conv)i and Q̇s,i respectively denote the heat
flux to the surface by convection and heat transfer from it to the other surfaces. Here, Ai is the area,
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Table 1: Comparison of our proposed method against naive
baseline and MLP without physics-based regularizer, in an
IID evaluation setting.

Without previous temperatures as inputs

Baseline Methods Proposed
Physics-Informed Method

Performance
Metric Naive Avg MLP Baseline EBV+EBS

RMSE tG (↓) 58.63 10.27 10.04
RMSE tS fur (↓) 53.03 8.94 7.95
RMSE tS obs (↓) 68.19 30.94 31.64

MAE tG (↓) 39.04 7.31 7.19
MAE tS fur (↓) 34.45 5.97 5.58
MAE tS obs (↓) 42.27 14.95 15.13

R2 tG (↑) -0.031 0.954 0.961
R2 tS fur (↑) -0.042 0.948 0.959
R2 tS obs (↑) -0.065 0.886 0.885

mMAPE fr (↓) 155.30 7.41 6.84
With previous temperatures as inputs

Baseline Methods Proposed
Physics-Informed Method

Performance
Metric Naive Avg MLP Baseline EBV+EBS

RMSE tG (↓) 58.63 5.75 4.91
RMSE tS fur (↓) 53.03 4.77 4.24
RMSE tS obs (↓) 68.19 17.18 17.39

MAE tG (↓) 39.04 3.21 3.01
MAE tS fur (↓) 34.45 3.09 2.74
MAE tS obs (↓) 42.27 4.80 5.81

R2 tG (↑) -0.031 0.984 0.989
R2 tS fur (↑) -0.042 0.983 0.989
R2 tS obs (↑) -0.065 0.966 0.966

mMAPE fr (↓) 155.30 7.86 6.87

Table 2: Comparison of our proposed method
against MLP without physics-based regularizer,
in an auto-regressive evaluation setting.

Without previous temperatures as inputs

Metric/ Method MLP EBV+EBS
EBV+EBS

improvement
over MLP (in %)

RMSE tG (↓) 28.6 27.3 4.2
RMSE tS fur (↓) 10.1 9.6 4.8
RMSE tS obs (↓) 42.7 44.0 -3.1

MAE tG (↓) 17.1 16.1 5.8
MAE tS fur (↓) 7.8 7.3 6.5
MAE tS obs (↓) 20.0 20.2 -1.1
mMAPE fr (↓) 69.2 63.5 8.2

With previous temperatures as inputs

Metric/ Method MLP EBV+EBS
EBV+EBS

improvement
over MLP (in %)

RMSE tG (↓) 74.1 36.8 50.3
RMSE tS fur (↓) 74.5 25.8 65.4
RMSE tS obs (↓) 83.3 65.3 21.5

MAE tG (↓) 48.8 29.3 39.9
MAE tS fur (↓) 49.7 20.8 58.2
MAE tS obs (↓) 53.6 42.0 21.6
mMAPE fr (↓) 96.2 40.6 57.8

and ϵi is the emissivity of the ith surface zone. In eq(4), since the computations are being done for
learning the gas zone related terms, the Tg terms after being obtained from fθ(x) (x: input tensor
to the PINN) are kept associated with the computational graph for back-propagating, but not the
Ts terms. The reverse is true in eq(5) where we are learning for the surface zone related terms, i.e.,
Ts terms are kept in the computational graph for back-propagating, but not Tg terms. In addition,
eq(4) and eq(5) also contain the DFAs (

↼

GS ∈ R|G|×|S|,
↼

SS ∈ R|S|×|S|,
↼

GG ∈ R|G|×|G|, and
↼

SG ∈ R|S|×|G|) and terms such as ag,n(Tg,i), kg,n, which can be referred from Hu et al. [10].

2 Experimental Results

PINN vs MLP vs Naive Baseline: In our experiments, we compare our proposed PINN against a
baseline MLP with the same architecture as our PINN, but without the physics-based EB regularizers
(architecture and training details in appendix). We also compare a naive baseline, which, for a test
instance, simply predicts the average value of a target variable using the training data. To evaluate the
methods, we make use of an IID dataset (details in Appendix). For each test instance, we have input
and output ground-truth values. We cast the prediction as a regression problem, and hence we can
make use of the following standard regression performance evaluation metrics: Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Coefficient of determination (R2). We separately
compute a model’s performance for gas zone temperatures, furnace surface zone temperatures and
obstacle surface zone temperatures, thus resulting in the metrics RMSE tG, RMSE tS fur, RMSE tS
obs, MAE tG, MAE tS fur, MAE tS obs, R2 tG, R2 tS fur, and R2 tS obs.

We train all models in the IID training split, tune hyper-parameters using the validation split, and
report all performance metrics on the test split. We also predict the next firing rates, and because they
are in practice within the normalized range [0, 1] [10], we make use of a modified Mean Absolute
Percentage Error (mMAPE), by adding a small value ϵ = 0.05 to the denominator of the MAPE
computation (to scale up the metric values). A lower value of RMSE, MAE, and mMAPE indicates
a better performance (indicated by ↓), while a higher value of R2 indicates a better performance
(indicated by ↑). The best obtained metric by a method shall be shown in bold in the result tables.

From Table 1, we noticed the superior performance of our proposed PINN over the MLP, as it better
respects the underlying physics. When previous temperatures are provided in the inputs, due to
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additional signals, performance of both improves, but ours becomes better. In all cases, both the MLP
and our PINN performs significantly better than the naive baseline, thereby, highlighting that learning
based methods indeed help in this scenario.

We additionally perform evaluation on the test data in an Auto-Regressive (AR) manner: Only for
the test data set, rearrange all the test instances of a furnace configuration according to their time
step values. Now, use the model checkpoint obtained in an IID manner on the training data, to infer
on the test data set for a configuration, and compute performance metrics. The metrics across all
configurations in the test split are then averaged.

Specifically, in the inference time step t of the AR evaluation, instead of providing the trained model
the input values of firing rates, gas and surface zone temperatures obtained during simulation, we
rather use the model predicted values obtained in the inference time step t− 1. This is similar to a
real-world operation, where a deployed model would be expected to continuously predict different
values and use them as inputs for the next model predictions.

In the IID evaluation setting (Table 1), at each inference step, the data is sampled IID, and the model
inputs are those that are obtained via the simulation, which would be correct, as per the zone model.
However, in the AR evaluation, over time, the model inputs being provided by its own predictions
done earlier, are prone to cumulative error propagation. Thus, we can see that in Table 2, the values
of performance metrics have degraded compared to the metrics obtained in the IID evaluation setting
(Table 1). Even then, our PINN outperforms the baseline MLP, on an average.

Also, when previous temperatures are provided as inputs, this makes the AR evaluation more
challenging. This is because there are now more input entities which could be predicted by the
model sub-optimally. In this case, performance of the MLP deteriorates significantly. This might be
because it merely learns to memorize the training data, without really understanding the underlying
physical phenomenon. On the other hand, our method, being aware of the underlying physics, is
more generalizable and hence performs significantly better than the MLP baseline (up to 50-65%
improvements). In the appendix, we provide additional experimental results, including the in-depth
analysis of our PINN.

Limitations of our PINN: The original data obtained by the computational model of [10] is time
dependent in nature, i.e., data of a time step is dependent on the previous time step outputs. However,
conforming to IID nature of data upon which standard ML/DL/MLP models are trained for regression,
we simplified the structure of the data, to make it IID. However, one could keep the time dependent
nature of the data intact and make use of a Recurrent Neural Network (RNN) to model the data during
training. However, doing so is best justified as a separate future work.

At the same time, in Tables 1-2, we noticed that our PINN is unable to consistently improve the
performance on the predicted obstacle surface zone temperatures (tS obs performance). This is
because our regularizer does not treat furnace and obstacle surfaces separately. Instead, the Lebs

term optimizes a collective loss across all surfaces (furnace and obstacles). The number of obstacle
surfaces are higher in practice, than the number of furnace surfaces. Temperatures poorly predicted for
a few of obstacle surfaces can increase the average errors. Our PINN regularizer does not proactively
address this. Also, geometry and other features of the slabs (e.g., material quality) are not taken into
account. While being geometry-agnostic is favorable to our framework in terms of simplicity and
generalizability, there is a trade-off between formulating a generic vs specific model. These avenues
can be addressed as independent works in the future.

3 Conclusion

While some loosely related prior works have touched upon aspects of radiative heat transfer, exchange
area calculation [13, 14], genetic algorithm for nonlinear dynamic systems [15], neural network
for absorption coefficients [16], view factor modeling with DEM-based simulations [17], near-field
heat transfer or close regime [18], and some on non neural network based temperature profiling in
reheating furnaces [19, 20, 21, 22, 23, 24, 25], casting the temperature prediction task in reheating
furnaces as a regression task, and modeling via explicit physics-constrained regularizers as done in
our work, is a first of its kind. In the future, our work could be extended for newer avenues, such as
incorporating additional furnace geometries via transfer learning and continual learning.
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Appendix

Table 3: Dataset details. A total of 50 configurations have been used which are categorized as normal or
abnormal.

Normal Behaviour Configurations (SP1<SP2<SP3)
Type 1 (Varying SP1 only) Type 2 (Varying SP2 only) Type 3 (Varying SP3 only) Type 4 (Varying WI only)

905_1220_1250_750.csv (Training)
915_1220_1250_750.csv (Val)

925_1220_1250_750.csv
935_1220_1250_750.csv (Training)

945_1220_1250_750.csv (Val)
965_1220_1250_750.csv

975_1220_1250_750.csv (Training)
985_1220_1250_750.csv (Val)

995_1220_1250_750.csv

955_1170_1250_750.csv (Training)
955_1180_1250_750.csv (Val)

955_1190_1250_750.csv
955_1200_1250_750.csv (Training)

955_1210_1250_750.csv (Val)
955_1230_1250_750.csv

955_1240_1250_750.csv (Training)

955_1220_1230_750.csv (Training)
955_1220_1240_750.csv (Val)

955_1220_1250_750.csv
955_1220_1260_750.csv (Training)

955_1220_1270_750.csv (Val)
955_1220_1280_750.csv

955_1220_1290_750.csv (Training)
955_1220_1300_750.csv

955_1220_1250_675.csv (Training)
955_1220_1250_690.csv (Val)

955_1220_1250_705.csv
955_1220_1250_720.csv (Training)

955_1220_1250_735.csv (Val)
955_1220_1250_765.csv

955_1220_1250_780.csv (Training)
955_1220_1250_795.csv (Val)

955_1220_1250_810.csv
955_1220_1250_825.csv (Training)

Abnormal Behaviour Configurations/ Arbitrary SPs
Type 1 (start@955-incr-dec/const) Type 2 (start@1220-incr-dec) Type 3 (start@1220-dec-inc) Type 4 (start@1250-dec-inc) Type 5 (start@1250-dec-inc)
955_1220_1200_750.csv (Training)

955_1220_1210_750.csv (Val)
955_1220_1220_750.csv

955_1250_1220_750.csv (Training)
955_1250_1220_765.csv (Val)

955_1250_1250_750.csv
955_1260_1250_750.csv (Training)

955_1270_1250_750.csv

1220_1250_955_750.csv (Training)
1220_1250_955_795.csv

1220_955_1250_750.csv (Training)
1220_955_1250_780.csv

1250_955_1220_750.csv (Training)
1250_955_1220_825.csv

1250_1220_955_750.csv (Training)
1250_1220_955_810.csv

Data set: For the IID data set generation, we make use of a FORTRAN code provided by the authors
of [1], to represent various furnace configurations of the real-world furnace shown in Figure 1a. We
consider 50 different configurations, and create disjoint train-val-test splits in such a way that there
is no overlap in the data across different splits. Also, each configuration could belong to either of
train/val/test split. As val/test data belong to furnace configurations different from that of training,
it naturally makes the test data OOD in nature. Each configuration can be defined by set point
temperatures and the walk-interval. Set point temperatures are essentially the desired temperatures
that the furnace is expected to achieve at different stages/ zones.

We represent a configuration as: SP1_SP2_SP3_WI, where SP1, SP2, SP3 and WI respectively denote
the set point 1, set point 2, set point 3, and walk interval. Note that we consider configurations with
both normal conditions (SP1<SP2<SP3, as naturally occurring in practice), as well as abnormal ones
(arbitrary set points). The details are present in Table 3. Here, each configuration is represented by a
.csv file containing 1500 time steps (and with the appropriate training/val label in parenthesis, and no
label for a test split). Within a configuration, each time step is sampled with a 15s delay, to account
for conduction analysis.

In Algorithm 1, we outline the key steps required in the data generation step, for a particular
configuration. Please refer [10] for details on the flow. Here, the major entities as discussed in our
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formulation are mentioned: fr(t), wi(t), sp(t), tG(t), tS fur(t), tS obs(t). In addition, we also
make use of auxiliary entities such as enthalpy q(t), heat-flux w(t), and node temperatures n(t).

Algorithm 1 Data generation algorithm
1: Initialize a furnace configuration via set points and walk interval.
2: Initialize X = {}, T > 0 (max no. of steps).
3: Initialize tG(0), tS fur(0), tS obs(0) with ambient temperatures, and fr(0).
4: for t=1 to T do ▷ t: time step
5: fr(t)← update firing rates(fr(t− 1), set point temperatures, tG(t− 1), tS fur(t− 1), tS obs(t− 1))

6: q(t) ← Enthalpy(Flow-pattern(fr(t)))
7:

↼
GG(t),

↼
GS(t),

↼
SG(t),

↼
SS(t) ← DFA(tG(t− 1), tS fur(t− 1), tS obs(t− 1),GG,GS,SG,SS)

8: tG(t)← EBV(q(t),
↼

GG(t),
↼
GS(t))

9: w(t) ← heat-transfer(tG(t), tS fur(t− 1), tS obs(t− 1),
↼
SS(t),

↼
SG(t))

10: tS fur(t), tS obs(t)← EBS(conduction(w(t))), n(t) ← conduction(w(t))

11: Xt ← {fr(t), Flow-pattern(fr(t)), q(t), tG(t), tS fur(t), tS obs(t),w(t),n(t)}
12: X ← X ∪ Xt

13: end for
14: return X

As the temperatures predicted in a time step influence the firing rates for the next time step, there is a
time dependency among the data inX . However, most standard off-the-shelf Machine Learning (ML)/
DL models suitable for regression require the data in an Independent and Identically Distributed (IID)
format, that could be loaded in a tabular form (with each row being an instance and the columns
representing the attributes). Thus, to convert X to XIID, we essentially add new columns and shift
the entries.

Particularly, we add a new column firing_rates_next by shifting the original firing rates column
a step back and then dropping the last row. Likewise, we add new columns for prev temperatures
by shifting the original temperature columns a step forward and then dropping the first row. After
rearranging the data as IID, we consolidate all the 20 training, 12 validation, and 18 test configurations
(with 1500 minus 2 time steps per configuration), resulting in 29960 train, 17976 val, and 26964 test
time steps/ IID samples. The 2 time steps are subtracted to account for the shift operations discussed
during the IID data creation.

Training details and model architecture: We train our PINN model EBV+EBS for 10 epochs
using PyTorch, with early stopping to avoid over-fitting. For the EB equations, we perform the same
normalization for enthalpy, flux, and temperatures, as in the final neural network output as discussed
earlier. We found a learning rate of 0.001 with Adam optimizer and batch size of 64 to be optimal,
along with ReLU non-linearity.

We pick the [50,100,200] configuration for hidden layers, i.e., 3 hidden layers, with 50, 100, and
200 neurons respectively. We use λebv = λebs = 0.1. In general, a value lesser than 1 is observed
to be better, otherwise, the model focuses less on the regression task. Following are values of other
variables: |G| = 24, |S| = 178 (76 furnace surface zones and 102 obstacle surface zones), Ng = 6,
and Stefan-Boltzmann constant=5.6687e-08. Unless otherwise stated, this is the setting we use to
report any results for our method, for example, while comparing with other methods.

(a) (b) (c)
Figure 2: Convergence behaviour of our method, considering: a) Supervised, b) EBV, and c) EBS terms.
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Table 4: Performance of EBV+EBS (ReLU) variant of our
method against varying hidden layer configurations.

Metric/
Hidden layer
configuration

[100] [50,100] [50,100,
200]

[50,100,
200,200]

[50,100,
200,200,
205,205]

RMSE tG (↓) 11.64 17.25 10.04 10.84 14.27
RMSE tS fur (↓) 10.05 15.23 7.95 7.83 12.46
RMSE tS obs (↓) 34.82 37.62 31.64 33.57 36.42
mMAPE fr (↓) 8.76 9.15 6.84 8.06 7.51

Table 5: Performance of the proposed
EBV+EBS
variant using different batch sizes.

Metric
EBV+EBS

ReLU
bsz=32

EBV+EBS
ReLU
bsz=64

EBV+EBS
ReLU

bsz=128

RMSE tG (↓) 12.70 10.04 10.73
RMSE tS fur (↓) 9.14 7.95 9.69
RMSE tS obs (↓) 39.75 31.64 31.79
mMAPE fr (↓) 5.24 6.84 8.29

Table 6: Effect of individual regularizer terms
in our method.

Metric EBV only EBS only EBV+EBS

RMSE tG (↓) 11.85 11.66 10.04
RMSE tS fur (↓) 10.36 11.07 7.95
RMSE tS obs (↓) 32.46 32.04 31.64
mMAPE fr (↓) 6.42 7.53 6.84

Table 7: Performance of our method using different activation
functions in the underlying network.

Metric EBV+EBS
ReLU

EBV+EBS
GeLU

EBV+EBS
SiLU

EBV+EBS
Hardswish

EBV+EBS
Mish

RMSE tG (↓) 10.04 13.57 10.07 15.26 10.16
RMSE tS fur (↓) 7.95 8.86 8.02 14.02 7.71
RMSE tS obs (↓) 31.64 39.65 31.64 36.23 31.63
mMAPE fr (↓) 6.84 5.88 6.23 7.03 6.33

Table 8: Comparison of our proposed method against classical ML baselines, in an IID evaluation setting.
Without previous temperatures as inputs

Classical ML Baselines Proposed
Physics-Informed Method

Performance
Metric DT RF H-GBoost EBV+EBS

RMSE tG (↓) 12.84 12.24 14.06 10.04
RMSE tS fur (↓) 9.42 8.97 10.09 7.95
RMSE tS obs (↓) 42.86 42.06 42.73 31.64

R2 tG (↑) 0.943 0.948 0.925 0.961
R2 tS fur (↑) 0.951 0.957 0.934 0.959
R2 tS obs (↑) 0.788 0.798 0.763 0.885

mMAPE fr (↓) 5.50 5.30 2.32 6.84

With previous temperatures as inputs

Classical ML Baselines Proposed
Physics-Informed Method

Performance
Metric DT RF H-GBoost EBV+EBS

RMSE tG (↓) 11.17 6.96 5.00 4.91
RMSE tS fur (↓) 10.24 6.15 6.12 4.24
RMSE tS obs (↓) 43.05 32.81 23.01 17.39

R2 tG (↑) 0.925 0.979 0.989 0.989
R2 tS fur (↑) 0.915 0.977 0.983 0.989
R2 tS obs (↑) 0.729 0.890 0.937 0.966

mMAPE fr (↓) 6.98 8.09 0.76 6.87

In-depth analysis of our PINN: To study our PINN in detail, we vary different aspects of our
method (e.g., the impact of individual loss/regularization terms, hidden layer configuration, batch size,
and activation functions). At a time, we vary one focused aspect, and fix all other hyper-parameters
as per the default setting prescribed above.

Firstly, we study the empirical convergence of the default setting of our method. Fig 2 plots the
convergence behaviour of each of the loss terms individually (supervised, EBV, and EBS). Our
method, as shown, enjoys a good convergence. In Table 4, we report the performance of our method
by varying the hidden layer configurations (e.g., [100] denotes one hidden layer with 100 neurons,
[50, 100] denotes two hidden layers with 50, and 100 neurons respectively, and so forth). The
maximum values for each row (corresponding to a metric) are shown in bold. We found that it suffices
to use [50, 100, 200] configuration for a competitive performance.

In Table 5, we vary the batch size in our method. We found a batch size of 64 to provide an
optimal performance for our experiments. In Table 6, we study the effect of individual physics-based
regularization terms used in our method. We found that using both instances of volume and surface
zone based regularizers together leads to better performance as compared to either EBV or EBS in
isolation.
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In Table 7, we vary the underlying activation functions throughout our model. While we observed
the benefits of using ReLU, SiLU, and Mish over others, there is no clear winner. All three lead
to competitive performance. But when it comes to consistent performance across batch sizes, we
noticed from our experiments that ReLU is more robust. Thus, we could recommend using the basic
ReLU as de facto in our experiments.

Additional comparisons of our PINN against classical ML techniques: In addition to DL, we
also compare our method against the classical ML baselines (in an IID evaluation setting): i) Decision
Tree (DT), ii) Random Forest (RF), and iii) Histogram Gradient Boosting (H-GBoost). When it
comes to only the classical ML baselines, the performances are as per the expectation. For instance,
with previous temperatures as inputs, the performance of DT, RF, and H-GBoost increases. However,
being an ensemble learning method, RF performs superior to DT. At the same time, by virtue of
boosting, among all the three classical methods, H-GBoost performs the best. We observe superior
performance of our model against the classical baselines as well, as reported in Table 8. H-GBoost,
though competitive, is significantly slower for our studied case of multi-output regression.
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