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Abstract

In recent space missions, the more complicated the missions become, the more
important autonomous spacecraft controllers are. In this study, we focus on a
precise autonomous orbit prediction of LEO (Low-Earth Orbit) satellite. The
Physics Informed Machine learning (PIML) enables us to predict the satellite
orbit with compatible accuracy to the numerical simulation but more efficiently.
The proposed physics-informed machine learning algorithm is based on modeling
the orbital trajectory as a Partial Differential Equation (PDE) and using deep
Neural Operator (NO) to model the system’s dynamic. We analyze the prediction
accuracy of the proposed model and compare it with a pure data-driven model. We
also provide the evaluation of the computation and memory requirements of the
proposed approach and compare it with a numerical orbit simulator.

1 Introduction

Recently, there has been a growing movement to utilize space using LEO (Low-Earth-orbit) satellites
in various fields such as earth observation, communications, positioning, disaster prevention, and the
environment. A LEO satellite orbits the Earth at an altitude of 400 km to 600 km, so it slows down
due to the thin atmosphere and loses its altitude. To compensate for the altitude loss, orbit control
is performed by firing the thrusters mounted on the satellite. To perform accurate and autonomous
orbital control, it is necessary to perform long-span orbital prediction with high accuracy by the
computer installed on the satellite. In the last decade, machine learning has gained significant
attention as a vital tool for obtaining valuable insights and achieving precision in predictions across
diverse domains. This has been driven by the accessibility of substantial datasets and enhancements
in computational capabilities.

A highly accurate orbit prediction numerical model such as special perturbation considers the effects
of atmosphere and solar radiation, but it is not suitable for practical use because some parameters such
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Table 1: Position error by each disturbance
Term Contribution

Ratio to 2-Body dynamics Accumulated error for 1 week (km)
2 Body(Earth) 100% -
J2 term(Earth) 0.14% 9.52
J3 term(Earth) 0.00081% 0.05508
J4 term(Earth) 0.00101% 0.06868
Sun 0.000006% 0.00043996
Moon 0.000015% 0.00102
Aerodynamics 0.00659% 0.44812
Solar Radiation 0.00068% 0.045968

as atmospheric drag coefficients must be uploaded frequently from the ground. Physics Informed
Machine Learning (PIML) aims at extending machine learning (ML) methods to model physical
systems. PIML neural networks are used to solve Ordinary Differentiable Equations (ODEs) and
Partial Differentiable Equations (PDEs) complementing traditional numerical solvers. Numerical
methods are based on exact equations, while ML methods are data-driven and can naturally work
with noisy observations or when the underlying physical model is not fully known. Moreover, neural
models are continuously differentiable in both their inputs and their parameters, a useful property in
several applications from engineering to physics.

2 LEO Equation of motion

The equation of motion of LEO satellite is as follows,

Mv
d2x

dt2
= Mv∇U (x, t) + fdist(x, t) (1)

where Mv is mass of satellite, U(x, t) is gravitational potential by the earth, and fdist is the force by
disturbance on orbit. Gravitational potential U(t) is written as

U(x, t) =
GM

r
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with θ latitude of the satellite, a the diameter of the Earth at equator (6378.137 km), GM =
3.986e5km3/s2, J2 = 0.0010826, J3 = −0.00000254, J4 = −0.00000151, where the values are
based on experimental data. The force by disturbance on orbit fdist is written as

fdist(x, t) = fmoon(x, t) + fsun(x, t) + faero(x, t) + fsolar(x, t) (3)

where fmoon(x, t), fsun(x, t), faero(x, t), fsolar are the disturbance due to the gravitational force of the
Moon, the Sun, the aerodynamic force, and solar radiation force.

2.1 Estimating the error by each disturbance

Table 1 shows the estimated error by each disturbance. In this table, the force in the two-body
dynamics is taken as 100%, and the ratio with each disturbance force is shown. Next, the position
error when the disturbance force has passed for one week is shown.
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Table 2: Detail of orbital numerical simulation
Element Configuration

Algorithm Special perturbation method
Gravity field order from the Earth 12
Gravity from the Moon Considered
Gravity from the Sun Considered
Atmosphere model MSISE00
Solar Radiation Considered
Cross-sectional area of the satellite body 12.5m2

Cross-sectional area of the solar paddle 10m2

(a) Data preparation for the PIML training, where
X are the past 24-hour, while Y are the next 24-
hours.

(b) PIML trajectory prediction, where at regular
intervals, for example, 1 hour, the PIML predicts
the next period. This approach is called one-shot.

3 LEO Orbit prediction PIML model

The satellite that we used for our experiments is an earth observation satellite, whose identity can not
be disclosed. Its orbital altitude is about 500km. The orbit of the satellite is Dawn-Dusk, which means
there will be a full sun path, i.e., the satellite is always affected by solar radiation. The orbit data
used in the experiments have been computed based on the parameters in Table 2 using an in-house
developed orbital numerical simulator. The numerical solver models the effects of the atmosphere,
solar radiation pressure, and other disturbance effects described in section 2. The starting position of
the satellite used to generate the data is based on the actual satellite position.

To train a PIML model, we first define the prediction task. The prediction task consists of observing
past data up to 24 hours and predicting the orbit for the next 24 hours (seeFigure 1a). Thus, a single
ML sample consists of a pair of input and output of the same size (Rn×6 × Rn×6), where each orbit
sample has information on the position (X,Y, Z) and velocity (Vx, Vy, Vz) in the Earth-centered
coordinate system. The length n of the ML sample depends on the sampling frequency (24 hours ×
sampling frequency ). We generate multiple overlapping samples that overlap for 30 minutes. We then
split the available data into train, validation, and test data (10k, 1k, 1k samples). The train data is used
for actual training of the PIML model, while the validation data is used for hyper-parameter selection,
where hyper-parameters consist of different architecture choices, pre-processing for example. The
test data is the data we use to evaluate the performance of the trained model.

3.1 Orbit1d Architecture, Training, Testing, and Hyper-parameter search

In this paper, we extend two machine learning models, Fourier Neural Operator (FNO) as a PIML
model [LKA+21], and Transformer [VSP+17] as a pure ML model. FNO is a Neural Operator
model [KLL+21] that uses the expressive power of neural networks for learning mesh-free, infinite-
dimensional operators. Although it is mainly developed for simulating partial differential equations
[TPL+22], we extended it to predict the satellite trajectory; FNO accepts now the past 24h trajectory
data as one- dimensional field data and predicts the next 24h trajectory also as one-dimensional
field data. Indeed, contrary to the original FNO architecture, the input of the model is over time as
opposed to space, while the channels are the position and velocities as opposed to the field values
(e.g. density, flow), we thus name the architecture Orbit1d. We experimented with auto-regressive
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Table 3: Performance of the evaluated architectures: Orbit1d (FNO) and Transformer (T5). Position
error is computed in km, while speed in km/s.

Measure Dataset Model Value

MSE Test Orbit1d 333.45
Transformer 790.88

MAE Test Orbit1d 21.55
Transformer 225.62

Position MAE Test Orbit1d 43.05
Transformer 450.74

MSE Validation Orbit1d 435.05
MAE Validation Orbit1d 23.44
Position MAE Validation Orbit1d 46.81

Table 4: Computational and Memory evaluation of the PIML model, where samples are 30 seconds
frequency, and comparison with NS.

Evaluation metric Value Unit

Inference time (prediction of 24 hours,
based on past 24 hours) @ GPU @30s

1.754± 0.366 ms

GPU Memory use @30s 3.152 MB
Number of parameters @30s 220’638
Numerical Solver (24 hours prediction) @
CPU @10s

25.6 s

Computation advantage of PIML vs NS 14’630x -

architecture, but the error quickly accumulated as shown in the experimental section, so we adopted
the one-shot prediction (Figure 1b), where the full trajectory is predicted. We also trained a T5-type
Transformer model [RSR+20] as a pure data-driven baseline model. T5 accepts past 15-minute
trajectories and predicts the next 6-minute trajectories with 3-minute intervals; T5 continues this
process autoregressively until predicting the next 24h trajectories. The training set-up and procedures
are provided in Appendix A.

4 Results

We computed the error on a test and a validation set. The validation set is used to select the optimal
hyper-parameter configuration, reported in Table 3. The loss used during training is the MSE loss
between the predicted and the true 24-hour trajectory. We also compute the error in terms of mean
absolute error (MAE) of the position, and the position and the velocities whose values are listed in
the following Table. The results show that our PIML model (FNO) has a much better performance
than the traditional data-driven method (T5). One of the reasons for the larger error of the T5 model
is the use of autoregressive prediction, that is, iteratively predicts the next time-step trajectory by
utilizing the prediction for the next-step input data. As a result, the error accumulates in the temporal
direction, resulting in a larger error for the next time-step prediction. On the contrary, the FNO-based
Orbit1d model performs the prediction in one shot (see Figure 1b) and thus is able to model the
consistency of the full trajectory. Further, the Orbit1d model used spectral convolution that has a
better frequency resolution inspired by the transitional numerical solver. A key limitation we observe
is the scale of the error and main trajectory. The model, after observing the past 24 hours, needs to
perform two tasks, for the next 24 hours: 1) learning to predict the main trajectory and 2) learning
the disturbance and correcting the prediction with the disturbance. The current method that presents
better performance, only performs the second task, while querying a traditional solver for the first
term. We evaluated the model for the number of parameters, memory requirement, and computation
time. For this, we experimented with a GPU card (GeForce GTX 1080 Ti) with GPU RAM of
11264MiB. From Table 4, we observe that the ML model can predict around 500 trajectories per
second, this speed can be used for applications that require a high refreshing frequency. The proposed
approach provides accurate trajectory prediction for non-critical applications and has a speedup of
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around 14, 000 times, as shown in Table 4, in comparison to accurate numerical simulators, further, it
adapts to the availability of new observatory data and thus could model hidden dynamics.

5 Discussion and Conclusions

In this paper, we applied physics physics-informed machine-learning technique to the satellite orbit
prediction task for the first time.

We evaluate the performance of our PIML models in predicting the full trajectory generated using
a highly accurate numerical simulator and using real data as a starting point, and not only the
disturbances with respect to the nominal trajectory as in recent works [CS23]. Our preliminary results
showed that our PIML model can provide us with a promising result. Although the trajectory error is
still larger than the recent work that only learns disturbances, we consider this could be solved simply
by increasing training data because of the data-driven manner. Importantly, we showed that our PIML
can predict 24h trajectory approximately 104 faster than the conventional numerical methods, which
is very promising for the future use of on-the-fly satellite trajectory prediction.
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Figure 2: Noise scheduling function as a function of the training epoch.

A The detailed training procedure for T5 model

For our T5 model, we utilized the vanilla Transformer encoder-decoder structure [VSP+17]. The
past trajectories are given as input data for both of encoder and decoder modules with 4 layers. The
number of attention head is set as unity. The dense layer and layer normalization are substituted into
the ones introduced in T5 paper. We utilized two one-layer networks before and after the Transformer
model to change the channel number from 6 (x, y, z, vx, vy, vz) to the hidden-channel number of the
Transformer model: 64. During the training, we calculated the loss function using the Huber loss
and Wing loss [FKA+18] functions. The weight parameters were optimized using Adam optimizer
[KB17].

B Training procedure

To train the network, we used data batches with random shuffling. The batch is composed of 100
sample trajectories. Each batch is propagated through the model and the prediction interval is
compared with the true future trajectory. The gradient is computed with respect to the parameters
of the network and the parameters of the network are updated based on the selected optimization
algorithm. As shown in the next sections, we used different optimization algorithms. We repeated
this procedure for all batches of the training dataset and repeated it for 200 epochs, reshuffling the
dataset at every new epoch. To improve the robustness of training, we add noise whose strength over
training epochs is defined by the scheduling function. The function is scaled with the variance of the
error and the shape is shown in Figure 2.

During hyper-parameter search, we implemented some early-stop if we see no progress in the training
loss.

C Hyper-parameters

The PIML model is parametrized by different hyper-parameters that are presented in Table 5. We
present in the following meaning: 1) the architecture, we considered two architectures, one inspired
by the FNO operator that we called Orbit1d and another one inspired by Visual Transformer (ViT)
in a configuration to as Auto-Encoder (AE). 2) The prediction modality, we consider the one-shot
prediction where we use the full data (X) and predict the full future trajectory (y). Auto-regressive
approach (see Figure 4) generates prediction using a moving window. It first considers the samples
from the last 15 minutes and then predicts the next period (in our case 6 minutes). The window is
then moved in time and the prediction is included in the new input. The next hour is then predicted.
The process is repeated until the full 24-hour period is covered. 3) the coordinate system: we
considered the original cartesian coordinate system (x,y,z) or a polar transformation in (ρ, θ, ϕ), since
this transformation creates a jump in the angles, we considered the representation there the angles are
mapped into the sine and cosine function, thus the coordinate system is (ρ, sinθ, cosθ, sinϕ, cosϕ).
4) Data processing: we consider the original input or a time difference between consecutive samples
or transform the input data to data of unitary norm and zero mean. The transformation is then applied

6



Table 5: Hyper-parameter description for the PIML

Hyper-parameter Possible configurations Optimal pa-
rameter

Architecture Orbit1d, ViT-AE Orbit1d
Prediction One-shot, autocorrelation One-shot
Coordinate system Cartesian, Polar, Polar with cos/sin repre-

sentation
Cos/Sin Polar

Data pre-processing Original space, Time sample difference,
scaling to N(0,1)

Scaling

Time Resolution 3 minutes, 1 minute, 30 seconds, 10 sec-
onds

30 seconds

ML optimizer Adam, RMS, SGD Adam
ML Scheduler None, LinearLR, ExponentialLR ExponentialLR
Orbit1d Modes,
Width, hidden dimen-
sions and number of
layers

Range of values: [8,128], [8,64], [8, 512],
[1,5]

37, 51, 387, 2

Learning rate Range of values [1e− 5, 1e− 1] 0.9e-4
Noise Temperature
and level

Range of values [.1, 10], [1e− 5, 1e− 1] TN = 6.4371,
σN = 0.0003

Figure 3: PIML trajectory prediction, where at regular interval, for example 1 hour, the PIML predicts
the next period. This approach is called one-shot.
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Figure 4: Auto-regressive prediction using PIML, contrary to the one-shot approach the prediction is
repeated inside a loop.

Figure 5: Visualization of orbit from the validation dataset (predicted, true).

back during prediction. 5) time-frequency: we consider the data at 3 minutes, 1 minute, 30 seconds,
or 10 seconds. In Figure 3 and Figure 3 we show the two prediction modalities.

D 24-hours prediction (3d & 1d plots)

Figure 5 shows an example of prediction along with the true trajectory for the 24-hour period. The
period of the satellite is about 90 minutes, so we expect to observe around 16 orbits.

In Figure 6 we show the same information but on the three major cartesian coordinates with respect
to Earth: X, Y, Z. Both predicted and true trajectories are visualized. The error is barely seen and
seems concentrated at the turning point of the sinusoidal shape. In other experiments, we have seen
the model introducing error at the very end of the trajectory, showing that the extremities of the
prediction are the most critical points for the ML model to predict.

In Figure 7 and Figure 8 similar to the previous figures, we show the predicted and true trajectory for
the test datasets. While the ML model is optimized for the validation dataset, performance is similar
to the test dataset.
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Figure 6: predicted trajectory of a sample trajectory from the validation dataset presented in the x, y,
and z axes. The plot shows the comparison of the predicted and the true trajectories.

Figure 7: Visualization of the predicted and true trajectories from the test dataset

Figure 8: Visualization of the predicted and true trajectories in the cartesian coordinate system from
the test dataset.
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