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Abstract

Accurate estimation of thermospheric density is critical for precise modeling of
satellite drag forces in low Earth orbit (LEO). Improving this estimation is crucial
to tasks such as state estimation, collision avoidance, and re-entry calculations.
The largest source of uncertainty in determining thermospheric density is modeling
the effects of space weather driven by solar and geomagnetic activity. Current
operational models rely on ground-based proxy indices which imperfectly correlate
with the complexity of solar outputs and geomagnetic responses. In this work,
we directly incorporate NASA’s Solar Dynamics Observatory (SDO) extreme
ultraviolet (EUV) spectral images into a neural thermospheric density model to
determine whether the predictive performance of the model is increased by using
space-based EUV imagery data instead of, or in addition to, the ground-based proxy
indices. We demonstrate that EUV imagery can enable predictions with much
higher temporal resolution and replace ground-based proxies while significantly
increasing performance relative to current operational models. Our method paves
the way for assimilating EUV image data into operational thermospheric density
forecasting models for use in LEO satellite navigation processes.

1 Introduction

As the number of space objects in the low-Earth orbit (LEO) grows [1], there is a need for a more
accurate model of the thermospheric density variability in order reduce uncertainty in trajectory
calculations and improve the accuracy of collision probabilities. The largest source of uncertainty in
LEO satellite trajectory calculations is the drag force, which in turn is driven largely by uncertainties
in thermospheric density estimation [2]. Currently, the large uncertainties characteristic of operational
thermospheric density models translate directly into more frequent conjunction warnings as resident
space object trajectory covariances frequently exceed warning thresholds. A major goal of modern
space traffic coordination (STC) is to reduce the number of low-probability conjunction warnings
issued to satellite operators and thus reduce their workload in adjudicating and mitigating possible
collisions. Hence, it is crucial to reduce the uncertainties in thermospheric density models as well as
to improve the tracking frequency and characterization of satellites and debris in LEO.

Basal thermospheric density levels are primarily set by heating from the absorption of extreme
ultraviolet (EUV) photons from the Sun. In addition, geomagnetic activity due to the interaction
of solar wind transients and solar Coronal Mass Ejections (CMEs) with the Earth’s magnetosphere
can cause impulsive heating and large deviations from basal levels, particularly during geomagnetic
storms. Current operational empirical models rely on simple daily proxy indices to represent the basal
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and transient solar impacts to the thermosphere, e.g. the F10.7 proxy index [3] which imperfectly
correlates with true EUV output, and the Kp or Ap indices [4] to represent geomagnetic activity. Both
indices are fairly crude representations of physical interactions, lacking in both spatial and temporal
resolution that results in underestimating the dynamics of the solar-terrestrial system. The High
Accuracy Satellite Drag Model (HASDM) is the operational thermospheric density model used by the
US Space Force (USSF) for their STC mission and is based on the empirical JB08 density model [5].
HASDM compensates the shortcomings due to use of proxy indices in the JB08 model by deriving
temperature corrections driven by assimilation of calibration satellite trajectory data. However the
model does not forecast well during high solar activity periods due to the limitations of using proxy
data inputs. For some time now, real-time EUV irradiance data has been available from NOAA
weather satellites and from NASA research satellites. It is therefore interesting to investigate whether
the use of this high-cadence data in a predictive model would improve density estimation during high
solar activity, e.g., during solar flare events that can increase the EUV and X-ray irradiance of the
Sun by an order of magnitude over time periods as short as an hour.

In this work, we directly incorporate data from NASA’s Solar Dynamics Observatory (SDO) EUV
images [6, 7] into a neural thermospheric density model to investigate and quantify how additional
information of the EUV spectrum and the solar activity can benefit the prediction of high-cadence
thermospheric density variations [8]. We demonstrate that compressed latent space embeddings
of SDO imagery generated by a variational autoencoder can replace ground-based proxies while
improving predictive accuracy and temporal resolution. This provides a pathway to near real-time,
high fidelity density estimation.

2 Background and Related Work

Drivers of thermospheric density change The dynamic changes in the thermospheric density
are caused by various space weather processes including EUV irradiance from the Sun and energy
deposition from the Earth’s magnetosphere during geomagnetic storm periods [9]. EUV photons
are deposited in the Earth’s upper atmosphere at thermospheric heights (200–1000 km above sea
level) where they provide the majority of the baseline energy input and heating. During geomagnetic
storms, thermospheric density can rapidly change by tens of percent on top of the baseline set by
the solar irradiance with concomitant changes in the drag force experienced by LEO resident space
objects. The position of the Earth relative to the Sun, as well as the Earth’s rotation cause diurnal
and seasonal variations of the EUV irradiance, and short term solar variation from solar flares (the
electromagnetic radiation following magnetic eruptions in the solar outer atmosphere) can last 1–4
hours and cause density perturbations of up to 20% [10].

Existing thermospheric density models Full physics-based models, while highly accurate, are
computationally intractable for real-time operations [11]. Instead, operational (empirical) models
such as JB08 [5], MSIS [12] and HASDM [13] are simplified physics-constrained functions that have
been fit to observational data. However, these rely on proxy indices to represent solar EUV irradiance.
While computationally efficient, proxies imperfectly capture complex spatiotemporal solar dynamics,
limiting density prediction accuracy and cadence to daily predictions. Recent machine-learning-based
approaches [14, 15] such as Karman2 [16, 17] demonstrate improved performance over operational
models. However, while there has been an addition of FISM2 EUV irradiance Stan bands in Karman,
these models still do not account for the full complexity of the solar activity.

3 Data

Here we outline the input features and density targets used in this work. For more information, a
detailed table is provided in the Appendix A.

SDO data, solar proxies and geomagnetic indices The Solar Dynamics Observatory provides
detailed solar imagery from the Atmospheric Imaging Assembly (AIA) [6], EUV Variability Exper-
iment (EVE), and Helioseismic and Magnetic Imager (HMI) [7] instruments. The AIA and HMI
data are incorporated through a machine-learning-ready derivative dataset, SDOML [18], containing

2https://github.com/spaceml-org/karman, date of access: September 2023.
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Figure 1: F10.7 predictions on test set against ground truth. Parity plot between averaged daily
F10.7 predictions from the model against the ground truth (left). Time series of F10.7 values and
corresponding high-cadence model predictions (right).

512x512 imagery spanning two ultraviolet and seven extreme ultraviolet wavelengths, as well as
magnetic vector field components Bx, By, Bz , resulting in a 12 channel image input (example in
Appendix A). Data is currently available at a 12 minute time resolution. Empirical models use solar
proxy indices: F10.7, M10.7, S10.7, & Y10.7 [8], and geomagnetic indices: Kp, Ap & Dst [4] to
account for geomagnetic storm activity, which are all provided daily.

Thermospheric density ground truth The primary source of ground truth for training tasks
is TUDelft’s thermosphere data [19]. These data contains precise orbit determination-derived
thermospheric drag values for CHAMP, GRACE, GRACE-FO, GOCE, and Swarm missions [19, 20,
21]. It contains satellite time, altitude, and location information as well which is used by models for
prediction. The data was sourced from multiple providers, with observations occurring at different
time intervals. GOCE & Swarm at 10 seconds, CHAMP & GRACE recorded once per 30 seconds.
We removed orbits with outlier density measurements caused by missing data (Appendix A).

Dataset preprocessing The dataset was aligned based on a forward-nearest fill policy. All exper-
iments were carried out at a 12-minute cadence, beginning on 4 May 2010, and iterated forward
until 29 November 2018. Following Karman [17], non-SDO inputs to models were 0/1 normalized
and cyclical features were produced for spatiotemporal inputs. The validation and test subsets were
selected by choosing one month of the calendar year, changing per year to the following month.

4 Methods

We follow a three step method for investigating whether EUV imagery can be used for accurate
thermospheric density modeling. First we generate general-purpose compressed embeddings of the
imagery. Then we add these features as input into a physics-informed deep learning model. Finally,
we systematically evaluate the performance of models with and without solar proxies and SDO data
in an ablation study. For more details on models, please refer to Appendix B.

Solar embeddings We first extract valuable features from SDOML data. Building on prior work
[22], we employ a variational autoencoder (VAE) trained to reconstruct SDOML data from a lower-
dimensional encoding, offering a highly compressed representation of the Sun’s state for downstream
tasks, such as thermospheric density prediction. Our VAE architecture is also enhanced with residual
blocks [23], enabling variable latent dimension testing [24].

SDO thermospheric density model In Karman [17], a simple feed-forward network (FFN) was
used to process the input empirical model features. Here we additionally embed SDO imagery with
the VAE as described and mean-aggregate embeddings from a 4 hour history at a 12 minute resolution
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Figure 3: Ablation study model performance. Distribution of absolute percentage error (APE) for
each model across altitude ranges (left), and solar activity levels (right).

for prediction. We concatenate this SDO time series embedding with the empirical model feature
embedding and process this through a further FFN for density prediction (Figure 2).

Figure 2: Model pipeline diagram. SDOML im-
ages are encoded using the VAE (Section 4), ag-
gregated, then concatenated with the other input
features in a feed forward neural network (FFN).

Physics-informed residual learning Karman
[17] directly predicted the (log) density from
input features. Here, we also investigated pre-
dicting residuals to a physics-informed model.
We use an exponential atmosphere (EXP) here
[25]3, which captures the simplest physics, but
in principle any baseline can be used, such as an-
other empirical model. This allows the model to
focus on correcting the model for the additional
information provided by the SDOML images
while staying close to the underlying physics.
Density predictions vary by orders of magni-
tude with altitude, so we use residuals in the
form: R(x, y) = log (y)− log (EXP(x)), where
x are the input features and y is the true den-
sity, as targets to train our network. We plan
to include more physical inductive biases in the
future, such as smoothness in space and time.

5 Results

We show that the inclusion of direct EUV imagery not only allows for higher-cadence reconstruction
of solar indices to use with existing models, but also accurate end-to-end density prediction.

Solar embeddings can reconstruct solar indices at high temporal resolution. To validate the
embeddings provide relevant information on solar activity, we use the VAE latent means as inputs
into a simple feed-forward neural network (Appendix B) to predict the F10.7 solar index. We find
that we are able to predict F10.7 at a high accuracy using just SDO embeddings, with a root mean
squared error (RMSE) of 8.32. This is significantly better than random embeddings (RMSE = 32.7).
Note this is not an auto-regressive model. If we were to include previous F10.7 values, we would
expect performance to increase even further. A key byproduct of this investigation is that we now
have a higher cadence ML-informed replacement for F10.7 for use in existing operational models.

3https://github.com/lcx366/ATMOS/blob/master/pyatmos/standardatmos/expo.py date of
access: September 2023
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Table 1: Ablation study results on test fold. The mean absolute percentage error (MAPE), mean
absolute error (MAE), root mean squared error (RMSE), and median symmetric accuracy (MSA [26])
is shown. Lower is better for all.

Model Solar
Imagery

Solar
Proxies

Physics
informed

MAPE MAE
/ 10−12

RMSE
/ 10−12

MSA

JB08 [5] ✗ ✓ ✓ 21.61 3.99 7.22 44.8
MSIS [12] ✗ ✓ ✓ 21.54 3.04 5.82 44.7
Karman [17] ✗ ✓ ✗ 15.61 1.79 3.60 41.0
Karman - Proxies ✗ ✗ ✗ 23.54 2.69 5.27 43.4
Karman - Proxies
+ EXP. Residual

✗ ✗ ✓ 23.45 2.30 4.85 42.8

Karman + EXP. Residual ✗ ✓ ✓ 14.18 1.72 4.32 40.2
SDO ✓ ✗ ✗ 16.67 1.93 3.63 41.6
SDO + Proxies ✓ ✓ ✗ 15.69 1.80 3.56 41.1
SDO + EXP. residual ✓ ✗ ✓ 14.50 1.90 4.36 40.8
SDO + Proxies
+ EXP. residual

✓ ✓ ✓ 14.00 1.72 4.23 40.3

F10.7 is only given daily but SDOML imagery is available every 12 minutes, so we can also predict
inter-day values (Figure 1).

Solar embeddings can replace proxies in thermospheric density models. Having now validated
the efficacy of the embeddings, we utilize them for thermospheric density prediction. We show results
for the best performing models on a validation fold across each model type in Table 1. We find that
an ML model using SDO has comparative performance to one using solar proxies (Karman [17]),
and greatly outperforms the standard empirical models. Including the proxies as well as SDO data
also improves performance. The physics-informed method of predicting residuals to a simple physics
model results in the best performance, significantly reducing the error in the baseline Karman model
as well. Figure 3 shows error rates for each model across altitudes and solar activities. We find that
SDO models work better in periods of high solar activity.

6 Conclusions

Contributions In this work, we have shown that we can replace daily ground-based proxies for
EUV irradiance such as F10.7 with solar imagery from the SDO mission for thermospheric density
predictions. By doing so, we enable accurate, higher cadence, near real-time density estimation for
LEO operations. From a science perspective, this shows that SDO imagery contains the relevant
information for accurate thermospheric density prediction for the first time.

Further work To ascertain whether our model can effectively capture short-term solar variability
such as flares, we should investigate time periods where flares have had a significant impact on density
[27]. An initial investigation of the ground truth density data found that flare effects were insignificant
compared to noise (Appendix C). Thus we must increase the fidelity of the measurements to get the
most benefit from the high temporal resolution EUV data. Research into extracting densities from
LEO satellite constellations and engineering data will be a promising area to investigate.
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A Data

A detailed breakdown of the data sources used in this work is presented in Table 2. An example of
the 12 channel SDO imagery used in this work is shown in Figure 4.

Data Cleaning We originally detected the need for a data cleaning process due to high prediction
error in limited circumstances. The cleaning process occurred by first detecting periods of time
greater than 30 seconds of continuously missing data. These brief instances in 1.05% of the dataset
contributed to examples of sub 10−14 kgm−3 recordings of density, which are outliers compared
to the usual behavior of the thermospheric density across the satellites’ orbits. While we have not
processed the precise orbit determination data ourselves, and therefore do not possess all elements
to assert if these values were actually the thermospheric density experienced by the satellite during
its motion, the lack of data during these periods as well as the fact that these values are significant
outliers (i.e., by two orders of magnitude) were enough to invalidate these orbits. An example is
provided in Figure 5, whereby the full orbit would then be rejected from the dataset time series.

Figure 4: SDO imagery from the SDOML dataset [18], ordered as three magnetic vector components,
seven extreme ultraviolet and two ultraviolet. The final image was unavailable due to sensor protection
during geomagnetic storming.

B Models

Here we describe the embedding model, proxy prediction model, and thermospheric density model
proposed here.

VAE The model architecture and training pipeline is shown in Figure 6. We trained this architecture
for ten epochs using the Adam optimizer [28] and a learning rate of 0.001. We used a latent embedding
size of 4,096 in this work and a validation size of 0.1%, roughly 2 days.

8



Table 2: Overview of data sources used in this work.

Name & Type Description Granularity & Source

SDOML (v2)
Training Data

Imagery
512x512/0.6,
512x512/0.5
arcsec

Atmospheric Imaging Assembly (AIA; Lemen et al. 2012)
2 ultraviolet, 1600 & 1700 Å
7 extreme ultraviolet, 94, 131, 171, 193, 211, 304,
and 335 Å Helioseismic and Magnetic Imager (HMI;
Schou et al. 2012) - visible filtergrams processed into:
photospheric Dopplergrams, line-of-sight magnetograms
and vector magnetograms

2010-2020
12 second cadence
for AIA

NASA Solar
Dynamics Observatory
(SDO)

CHAMP
Ground Truth

CHAMP, a LEO satellite launched on July 15, 2000,
orbits Earth in 90 minutes with an initial altitude of
456 km and an orbit inclination of 87.3°. CHAMP
needs 131 days to cover all local times
(longitudinal cycle). CHAMP re-entered in
September 2010. Includes satellite location data.

May 2000-Sep 2010
30 second cadence
GFZ

TUDelft

GOCE
Ground Truth

GOCE is a LEO satellite launched on 17 March 2009
at 270km and 96.5° orbit inclination. The mass density
estimates were determined from the along-track
acceleration of the GOCE satellite’s ion propulsion
array with changing thrust. The retrieved GOCE mass
densities are made available by the ESA. GOCE
re-entered in October 2013. Includes satellite
location data.

Nov 2009-Oct 2013
10 second cadence

ESA Earth Online

TUDelft

GRACE/
GRACE-FO
Ground Truth

GRACE-A and GRACE-B were twin satellites
launched in March 2002. GRACE-B kept 220 km
from GRACE-A. Both spacecraft derived comparable
mass densities. GRACE started at 500 km. GRACE
had a 95-minute orbit and 89.5° declination. GRACE
longitudinal coverage is about 160 days. GRACE
reentered in March 2018.
GRACE-FO mission maintains GRACE legacy.
GRACE-FO is a NASA-GFZ collaboration. Includes
satellite location data.

Apr 2002- Nov 2009
30 second cadence
NASA’s Physical
Oceanography Distributed
Active Archive
Center (PO.DAAC)

TUDelft

SWARM-A&B
Ground Truth

Alpha, Bravo, and Charlie (A, B, and C) are identical
satellites launched into near-polar low Earth orbit
simultaneously for the swarm project.SWARM-A,-B,
and -C precess at different local times. For example,
SWARM-A and -B precess through 12 hours of local
time in 133 days, whereas SWARM-C precesses through
12 hours in 144 days, resulting in a local time gap of 10
hours after 5 years of lunch.

European Space Agency
(ESA) Swarm Mission

FTP from TUDelft

10.7
Solar Proxies

F, M, S, & Y proxies
F10.7 - Flux of solar radiation at 10.7cm wavelength.
A long running index. M10.7 - Derived from the Mg II
core-to-wing ratio, recording middle-UV near 280nm
S10.7 - integrated 26-34nm irradiance measured by
the Solar Extreme-UV Monitor above Solar and
Heliospheric Observatory Y10.7 - The normalised
81-day F10.7 defines a weighted sum of a solar X-ray
region without flare and Lyman-alpha.

Space Environment
Technologies

Dst & Ap
Geomagnetic Proxies

Ap index - Enumerated Kp index, a 3 hour
quasi-logarithmic index of magnetic activity relative to
a calm day curve. Disturbance Storm Time (Dst) index -
measure of geomagnetic activity from observatories
near the equator, intensity of the globally symmetrical
equatorial electrojet.

Celetrack
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Figure 5: Instance of two orbits whereby a greater than 30 second gap in data occurred, leading to an
erroneously low density measurement.

Figure 6: ResNetVAE architecture and training.

Proxy indices prediction Model hyperparameters are given in Table 3. We train/validation/test
split by month as discussed in Section 4.

SDO thermospheric density model We experimented with a range of time resolutions and his-
tories. Including more SDOML history and resolution did not significantly improve results, so
we opt to include 4 hours of history at a 12 minute resolution such that short term solar activity
such as flares are able to be captured by the model [10]. We use mean pooling to aggregate the
embeddings. We additionally tried other aggregation methods such as max pooling, a learnable linear
combination, and attention-weighted pooling, but these did not significantly improve performance.
Model hyperparameters are given in Table 4.

C Effects of short-term EUV irradiance are difficult to observe in the ground
truth density data

Figure 7 shows ground truth densities during a flare event and geomagnetic storm. We find that
in many cases we cannot see the flare in the underlying noise, and hence it is difficult to ascertain
whether our model captures this short-term activity. Large (X-flare) events without the presence of
CMEs or a geomagnetic storm are rare, and these are the only type of short-term variation that will
significantly change thermospheric density and thus be relevant for satellite operations [27].

10



Table 3: Hyperparameter configuration for F10.7 prediction model.

Hyperparameter Value

Optimization
Loss Function Mean Squared Error (MSE)
Target F10.7
Optimizer Adam [28]
Learning Rate 0.0001
Batch Size 512
Early Stopping Patience (epochs) 10
Max Epochs 100

Architecture
Hidden Layer Non-linearities Leaky-ReLU (slope=0.01)
Encoder Hidden Dimensions [512,256,256]
SDO pooling Mean

Data
SDO Embeddings VAE latent mean (4,096 dimensional)
SDO Time Resolution 1 hour
SDO Sequence History 1 day

Table 4: Hyperparameter configuration for SDO thermospheric density model.

Hyperparameter Value

Optimization
Loss Function Mean Squared Error (MSE)
Target [Log density] or [log(density) - log(baseline model prediction)]
Optimizer Adam [28]
Learning Rate 0.0001
Batch Size 64
Early Stopping Patience (epochs) 2
Max Epochs 4

Architecture
Hidden Layer Non-linearities Leaky-ReLU (slope=0.01)
Empirical Features Encoder Hidden
Dimensions

[256,256,256]

Combined Encoder Hidden Dimen-
sions

[256,256,256]

SDO pooling Mean

Data
SDO Embeddings VAE latent mean (4,096 dimensional)
SDO Time Resolution 12 minutes
SDO Sequence History 4 hours

Nevertheless, by including high-cadence SDO images, our model is theoretically capable of capturing
this. Up-sampling flare events may be necessary for the model to adequately learn from these outliers
though. An additional by-product of this observation is that changing the history length and time
resolution of SDO images used for prediction did not change accuracies significantly.
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Figure 7: Time series ground truth density during flares and geomagnetic storm periods. Solar flares
(orange), periods where the Ap geomagnetic index was 8 or greater (red).
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