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Abstract

In this work, we introduce an ML framework to generate long-term single-polymer
dynamics by exploiting short-term trajectories from molecular dynamics (MD)
simulations of homopolymer melts. Even with current advances in machine learn-
ing for MD, these polymeric materials are difficult to simulate and characterize
due to prohibitive computational costs when long timescales are involved. Our
method relies on a 3D neural autoregressive (NAR) model for collective variables
(CVs), which enhances the Generalized Langevin Equation capabilities in mod-
eling diffusion phenomena. ML-GLE is capable of reproducing long-term single
polymer statistical properties, predicting the diffusion coefficient, and resulting in
an enormous acceleration in terms of simulation time. Moreover, it is also scalable
with system size.

1 Introduction

Accurate mesoscale MD simulations of physical systems require huge computational resources,
given the number of degrees of freedom (d.o.f) and the complexity of interactions involved. Data-
driven dimensionality reductions, like coarse-graining (CG) [1–6], are not sufficient, and accessing
long timescales remains expensive. In polymer melts (Fig.1), single polymers undergo Transient
Anomalous Diffusion (TAD); their mean square displacement (MSD), ⟨X2(t)⟩, is characterized by
a long anomalous subdiffusive timescale, tν with ν ∈ (0, 1), before reaching a linear diffusive one,
where ⟨X2(t)⟩ = Dt.
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Figure 1: A snapshot of
a CG MD simulation of a
Butadiene Rubber melt. In
red, a tagged polymer. ML-
GLE exploits short single-
polymer trajectories to gen-
erate long-term stochastic
dynamics and predict D.

Resorting to the description of single polymers reduces the number
of d.o.fs, and the governing effective dynamics can be described by
the Generalized Langevin Equation (GLE), for a proper selection of
CVs [7–9]. However, their dynamics is non-Markovian and memory
effects are difficult to model and reproduce faithfully. Parametric GLE
models of TAD exist, but they fail when no data is available on the
transient and diffusive regimes [10, 11].

Several studies have proposed a data-driven parametrization of GLEs
[12–20]. Chorin and Lu’s seminal work [21] has outlined the con-
nection between nonlinear autoregressive models and the governing
equations of the effective stochastic dynamics of a subset of variables
of interest. In [22], a GLE description based on a nonlinear autoregres-
sive model for a CV is proposed, with data from a MD simulation of
a magnetic system. In contrast, this work proposes, to our knowledge,
the first application of data-driven GLEs employing neural networks,
to a diffusion problem in soft matter.

Our framework, called ML-GLE, accelerates the polymer Center of
Mass (C.o.M) dynamics computation. It connects it to physically
motivated faster CVs through a parametrized solution of an ansatz
GLE, able to model TAD [11]. We independently train a set of NAR
generative models, each of them accounting for a different 3D CV. In addition, we improve its
learning capabilities by exploiting the symmetries of the physical system. As a result, the 3D CV
stochastic dynamics is stable in the long term. Since training and generation are fast and we only use
short downsampled CG MD trajectories, the computational cost to estimate asymptotic relaxation
properties (MSD) reduces dramatically.

2 Background

The Generalized Langevin Equation (GLE) is a stochastic integro-differential equation, accouting for
memory effects and being able to reproduce TAD [23]. In absence of external force fields, it reads as
follows,

mẌ(t) = −
∫ t

0

Γ(t− s)Ẋ(s)ds+ F(t) (1)

where X(t) is a spatial coordinate (e.g. C.o.M), Γ(t) the kernel function and F(t) a colored noise.
The information on the unresolved environmental variables is contained in the kernel function, which
is seldom known and usually intractable. However, if the kernel is integrable3, lim

t→∞
E[X2(t)] ∼ t,

and a solution can be thus obtained in the zero-mass limit [11], yielding,

X(t) = αB(t) + β

N−1∑
j=1

zj(t), (2)

where B(t) is a Brownian process modeling C.o.M diffusion, and {zj(t)}N−1
j=1 is a set of faster

stochastic processes, which are responsible for the anomalous behaviour and implicitly carry informa-
tion about the environment. We notice there exists a similarity between the latter and single polymer
modes of fluctuation [24], called normal modes, in the prototypical case of polymer diffusion. We
assume therefore that sufficient information on the long-term behaviour is contained in the short-term
dynamics of the k slowest modes. The components of the latter are given by the Discrete Cosine Trans-
form (DCT), zj,t =

∑N
n=1 xn,t cos

[
π
N

(
j + 1

2

)
n
]
, where {xn,t}Nn=1 stands for monomer coordinates.

The result is a non-Markovian 3D discrete time stochastic process {zj,t}t>0, ∀j ∈ {1, ..., k}.

3More details on kernel families and integrability conditions, as well as TAD can be found in [23]

2



Figure 2: Training scheme. Mode j (subscript dropped) is extracted from polymer configurations
with a DCT. Subtrajectory of length m and target are rotated to a fixed reference frame, such that ê1t
is always aligned with ẑt−∆t, while ẑt−2∆t, lies in the plane formed by ê1t , ê2t .

3 ML-GLE framework

3.1 Neural Autoregressive Generative Model for non-Markovian processes

We denote as ymj,t = {zj,t−i∆t}mi=1 ∈ R3×m the 3D mode historical trajectory and as ∆zj,t ∈ R3×1

its successive time increment vector. Since the whole system is at equilibrium, it is safe to assume that
the processes possess a finite size memory of order m, corresponding to a time lag tmax = m∆t, and
that p(zj,t|ymj,t) is stationary. We propose therefore to approximate it with a parametrized distribution
pθ(∆zj,t|ymj,t) for first differences, followed by an integration step. A 3D Gaussian distribution
constitutes a good ansatz, since the modes stationary distribution is also Gaussian, hence,

pθ(∆zj,t|ymj,t) ∼ N (∆zj,t|µj,θ(y
m
j,t),Σj,θ(ym

j,t)) (3)

where µj,θ : R3×m → R3,Σj,θ : R3×m → R3×3 are two neural networks parametrizing the
conditional mean and covariance matrix, depending on instances of historical trajectories. Each
ymj,t feeds a network Fj,θ (MLP) which encodes input-output correlations and forecasts the two
distribution parameters. ∆zj,t is used as target of the supervised training scheme, as shown in Fig. 2.

Symmetries. Polymers diffuse isotropically in the absence of external driving perturbations break-
ing spherical symmetry. Thus, the conditional distribution should be invariant under any arbitrary
global rotation, i.e. p(∆zj,t|ymj,t) = p(R∆zj,t|R ◦ ymj,t), where R ∈ SO(3), and is applied element-
wise to ymj,t. This observation is crucial for asymptotic generation stability because training in a fixed
reference frame spares the network from learning rotations in SO(3), and avoids the need for data
augmentation, or more complicated architectures. Rj,t = [ê1j,t, ê2j,t, ê3j,t] is defined from the last three
elements of ymj,t, following the Gram-Schmidt orthonormalization. The result is a fixed orthonormal
set spanning R3. In this way, optimization is performed in the same reference frame because training
instances are transformed accordingly, ŷmj,t = Rj,t ◦ ymj,t, ∆ẑj,t = Rj,t∆zj,t (see Fig. 2).

Loss function. We optimize on the Negative Log-Likelihood of a 3D Gaussian distribution,

LNLL(θ) = Tr(logDj,t) + (∆ẑj,t − µj,t)
TΣ−1

j,t (∆ẑj,t − µj,t) (4)

where Dj,t is the diagonal matrix of the LDLT decomposition of Σj,t. This is justified by the fact that
∇θL(θ) ∝ ∇θ detΣθ/ detΣθ, meaning that the backpropagation signal would be sensitive to small
entries in the covariance matrix, leading to exploding loss values. Hence, [µj,t,Dj,t,Lj,t] = Fj,θ(ŷm

j,t).

Autoregressive Generation. Once ŷmj,t is fed to Fθ, we use the reparametrization trick to sample
∆ẑj,t, which is then rotated back to the ym

j,t reference frame. Given ϵ ∼ N (0, I3) one has,

∆ẑj,t = µj,t + Lj,tD
1/2
j,t ϵ, ∆zj,t = R−1

j,t∆ẑj,t

Following an implicit Euler integration scheme zj,t = zj,t−∆t +
σ∆zj
σzj

∆zj,t∆t, a new value of zj,t is
therefore obtained.
σ∆zj/σzj are the empirical standard deviations and are needed for consistency, since ∆zj , zj are both
standardized. The new input trajectory is obtained with a sliding window on the newly sampled value.
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Figure 3: NAR generation results vs. MD for the 1st, 2nd, 5th and 10th mode, at T = 300K.
Figure a) demonstrates the important deviations of MD NACFs from the corresponding exponential
fit (in black), characteristic of classical Markovian OU processes.

3.2 Learning the GLE parameters

Rewriting Eq. (2) as a lag-t finite difference equation, squaring and taking expectations, yields
E[∆X2

t ] = α2t + β2
∑k

j=1 E[∆z2j,t]. In the latter, we imposed modes statistical independence,
E[∆zi,t∆zj,t] = σ2

ij,tδij , which allows training k separate neural networks. We fit the GLE parame-
ters on short-time ensemble averages datapoints, hence,

α∗
k, β

∗
k = argmin

α,β

{∑
t∈P

(
⟨∆X2

t ⟩ − α2t− β2
k∑

j=1

⟨∆z2j,t⟩
)2}

, s.t. α, β ≥ 0 (5)

where P = {1, tmax/2, tmax} and tmax = m∆t.

4 Results

We have performed 11 MD simulation of 100 cis-Polybutadyene polymer chains with N = 100
monomers, from 300K to 400K, every 10K, in NVT conditions, with dissipative particle dynamics
in LAMMPS4. CG potentials are obtained from an All-Atom MD simulation of the same system (see
[25]). We used a small δt = 50 fs and snapshots were saved each ∆t = 2000δt. Simulations run
for Tsim = 105∆t but, for training, Ttrain = 0.01Tsim. For each polymer, only the slowest k = 12
modes are computed from monomer coordinates. Subtrajectory training instances are finally obtained
with a lag-1 sliding window of length m+1 up to Ttrain for each of the 100 polymer trajectories. We
therefore obtain a larger set of subtrajectories, used for mini-batch training, after random shuffling.

3D subtrajectories of length m = 128 are encoded, after flattening, with an MLP made of 2
hidden layers with 512 neurons, and mapped to a latent vector of size 12. This provides the input
for two separate dense layers outputting the conditional mean vector and elements of the LDLT

decomposition. Training is executed with Adam optimizer with learning rate η = 10−4, using
early-stopping.
One can appreciate the statistical relevance of our results when comparing the empirical normalized
autocorrelations (NACF) and PDFs of the NAR generated modes with respect to the MD ones (see
Fig. 3). In addition, the comparison between the normal modes MD NACFs and their corresponding
exponential fit makes it clear that a simple OU process, as proposed in the GLE solution, is not
flexible enough to reproduce the desired dynamics. Our approach attempts therefore to approximate
the conditional non-Markovian distribution in a parametric way. After optimizing on Eq. (5), we use
Eq. (2) to generate C.o.M synthetic dynamics starting from 300 MD initial trajectories. As shown in
Fig. 4, ML-GLE is able to capture TAD and predict the diffusion coefficient extrapolating on short
trajectories of length tmax. This method is also scalable, as increasing system size would imply more
subtrajectory data, consequently requiring even shorter simulations. The method’s consistency was
tested on all available temperatures, yielding satisfying results. Also note that the information about

4Training data is available at https://huggingface.co/datasets/gian-michele/meltBR/settings
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the stationary PDFs or ACFs is not included in the training architecture or loss function and in spite
of that the NAR model is able to reproduce the correct statistical properties, hinting at the fact that
we are approximating the correct coarse-grained stochastic integrator for the normal modes.

5 Limitations
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Figure 4: MSD at T = 300K. Esti-
mated diffusion coefficients with 95%
confidence intervals, D̂MD = (0.114±
0.011)Å2/∆t , D̂GLE = (0.125 ±
0.007)Å2/∆t .

Training data comes from a CG system, which implies an
upper bound on the method accuracy; this is determined
by the quality of the CG approximation as compared to
the All-Atom simulation.
We implicitly made the independence assumption on tra-
jectories, but single polymers are not necessarily inde-
pendent, as they come from the same system. Small cor-
relations may be present when training on subtrajectory
batches, effectively reducing the dataset diversity. This
issue tends to be less relevant for larger systems, as more
statistics on distant less correlated single polymers are
available.
In addition, although with low probability, the normal
modes empirical distribution tails indicate unrealistic out-
of-distribution sampling. A probable diagnosis for this
problem resides in the spatial symmetry of the Gaussian
approximation when sampling on extreme values.

6 Conclusion

In this work, we presented an ML framework for Transient
Anomalous Diffusion of single polymers in homopolymer
melt simulations, predicting its transient time and diffusion coefficient. We develop a 3D neural
autoregressive model for CVs and use physical symmetries to generate long-term stable dynamics,
offering a first example of how GLE and deep learning can help accelerate slow diffusion phenomena
in MD simulations. Future research includes investigating the model generalization capabilities:
advanced architectures like Transformers networks are targeted. They could be trained on data at
different thermodynamical coordinates, that would act as conditioning static features.

7 Broader Impact

Polymer melt is an umbrella term encompassing a large variety of highly viscous fluids displaying non-
Newtonian and viscoelastic behaviour [24]. Although the only tested system was Butadiene rubber,
our model is agnostic with respect to chemical details as it exploits physical variables pertaining to
single polymers. Consequently, we expect any homopolymer melt simulation at equilibrium could
potentially benefit from this work. Related to the broader field of polymer physics and material
design, we speculate this approach could be useful to devise better dynamical CG schemes for
full-size polymer simulations since the mapping monomers-modes is bijective and allows therefore
for polymer configuration reconstruction.
Non-Markovian dynamics is the norm when dealing with complex systems, especially when only
some variables are observable. Consequently, we suppose that the neural autoregressive model
presented here could be appropriate when one wishes to access the asymptotic statistical properties
of mean-reverting5 processes, from either physical simulations or real-world data (e.g. biological or
financial time series).
Furthermore, anomalous diffusion has been discovered in numerous systems, mostly in disordered
media [26]. Some interesting examples include external tracer particles in biological cells [27, 28],
and in artificially crowded systems [29, 30]. Protein simulations studies have reported anomalous
subdiffusive behaviour as well [31–33]. All these systems exhibit transient behaviour and therefore
this approach could pave the way for data-driven modeling of diffusing macromolecules within the
GLE framework, both from in vitro and in vivo data sources [34].

5A stochastic process which asymptotical reverts to its mean
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