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Abstract

We introduce the FRactional-Order graph Neural Dynamical network (FROND),
a learning framework that augments traditional graph neural ordinary differen-
tial equation (ODE) models by integrating the time-fractional Caputo derivative.
Thanks to its non-local characteristic, fractional calculus enables our framework to
encapsulate long-term memories during the feature-updating process, diverging
from the Markovian updates inherent in conventional graph neural ODE models.
This capability could substantially enhance graph representation learning by intro-
ducing more nuanced feature updating dynamics. Analytically, we exhibit that the
over-smoothing issue is mitigated when feature updating is regulated by a fractional
diffusion process. Additionally, our framework affords a fresh dynamical system
perspective to comprehend various skip or dense connections situated between
GNN layers in existing literature.

1 Introduction

Graph Neural Networks (GNNs) [1–9] have excelled in diverse domains, e.g., chemistry [1], finance
[2], and social media [3–5]. The neural message passing scheme, where features are propagated along
edges and optimized for a specific downstream task, is crucial for the success of GNNs. Over the past
few years, numerous types of GNNs have been proposed, including Graph Convolutional Networks
(GCN) [3], Graph Attention Networks (GAT) [10], and GraphSAGE [11]. Recent works, such as
[12–20], have incorporated various continuous dynamics to propagate information over the graph
nodes, inspiring a new class of GNNs based on ordinary differential equations (ODEs)2 [21–23].

Within these graph neural ODE models, the differential operator dβ/ dtβ is conventionally con-
strained to integer values of β, primarily 1 or 2. However, over recent decades, the wider scientific
community has delved into the domains of fractional-order differential operators, where β can be
any real number. These expansions have proven pivotal in various applications characterized by

∗First two authors contributed equally to this work. Contact: kang0080@e.ntu.edu.sg, kai.zhao@ntu.edu.sg.
2Models like GRAND [12] primarily utilize ODEs on graphs, albeit inspired by partial differential equations.

We consistently refer to such models as graph neural ODE models.
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nonlocal and memory-dependent behaviors, with prime examples including viscoelastic materials
[24], anomalous transport mechanisms [25], and fractal media [26]. The distinction lies in the fact
that the conventional integer-order derivative measures the function’s instantaneous change rate,
concentrating on the proximate vicinity of the point. In contrast, the fractional-order derivative [27]
is influenced by the entire historical trajectory of the function, which substantially diverges from the
localized impact found in integer-order derivatives.

In this study, we introduce the FRactional-Order graph Neural Dynamical network (FROND) frame-
work, a new approach that broadens the capabilities of traditional graph neural ODE models by
incorporating fractional calculus. It naturally generalizes the integer-order derivative dβ/ dtβ in
graph neural ODE models to accommodate any positive real number β. This adaptation enables
FROND to incorporate memory-dependent dynamics for information propagation and feature updat-
ing, potentially enhancing graph representations and performance. Notably, this technique ensures at
least equivalent performance to integer-order models, as it reverts to conventional graph ODE models
without memory when β is an integer.

Main contributions. Our main contributions are summarized as follows:

• We propose a novel, generalized graph framework that incorporates time-fractional derivatives.
This framework generalizes prior graph neural ODE models [12–18], subsuming them as special
instances. This approach also lays the groundwork for a diverse new class of GNNs that can
accommodate a broad array of learnable feature-updating processes with memory.

• We have implemented and open-sourced a suite of neural fractional differential equation (FDE)
solvers. We anticipate these solvers to be of significant value to the GNN and physic community.
Certain time-discretization strategies employed in these solvers can be viewed as layers in a deep
neural network with dense/skip connections [28]. This provides a fascinating analogy to the residual
characteristic of Euler solvers in conventional neural ODEs [21] and give a new perspective to
understand various skip or dense connections used between layers in prior literature [29–32].

• We highlight FROND’s compatibility and its seamless integration potential to enhance existing
graph ODE models across varied datasets. This work primarily showcases FROND’s performance
with feature-updating dynamics derived from the fractional heat diffusion process. We demon-
strate analytically that over-smoothing can be mitigated in this setting. The fractional differential
extension of other graph neural ODE models [13–18] is left for future exploration.

2 Preliminaries

2.1 The Caputo Time-Fractional Derivative

The traditional first-order derivative of a scalar function f(t) represents the local rate of change of
the function at a point, defined as: df(t)

dt = lim∆t→0
f(t+∆t)−f(t)

∆t . Its Laplace transform is:

L
{

df(t)

dt

}
= sF (s)− f(0). (1)

The Caputo fractional derivative of order β ∈ (0, 1] for a function f(t) is defined as follows [27]:

Dβ
t f(t) =

1

Γ(1− β)

∫ t

0

(t− τ)−βf ′(τ) dτ, (2)

where Γ(·) denotes the gamma function, and f ′(τ) is the first-order derivative of f . The Caputo
fractional derivative inherently integrates the entire history of the system through the integral term,
emphasizing its non-local nature. The Laplace transform of the Caputo fractional derivative is:

L
{
Dβ

t f(t)
}
= sβF (s)− sβ−1f(0). (3)

Comparing the Laplace transforms in (1) and (3) of the traditional first-order derivative and the
Caputo fractional derivative respectively, it becomes clear that the latter generalizes the former. When
β = 1, D1

t f = f ′ is uniquely determined through the inverse Laplace transform [33].

2.2 Diffusion Equation and Its Application to GNNs

We denote an undirected graph as G = (X,W), where X =
([

x(1)
]⊺
, · · · ,

[
x(N)

]⊺)⊺
∈ RN×d

consists of rows x(i) ∈ Rd as node feature vectors and i is the node index. The N × N matrix
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W := (Wij) has elements Wij indicating the edge weight between the i-th and j-th nodes with
Wij = Wji. Inspired by the standard heat diffusion equation, GRAND [12] utilizes the following
nonlinear autonomous dynamical system for node feature updating in GNNs:

dX(t)

dt
= (A(X(t))− I)X(t). (4)

where A(X(t)) is a learnable, time-variant attention matrix, calculated using the features X(t), and
I denotes the identity matrix. The feature update outlined in (4) is referred to as the GRAND-nl
version (due to the nonlinearity in A(X(t))). We define di =

∑n
j=1Wij and let D be a diagonal

matrix with Dii = di. The normalized Laplacian matrix is then represented as L = I−WD−1 or
L = I−D−1W, following column or row normalization, respectively. In a simplified context, we
employ the following linear dynamical system:

dX(t)

dt
= −LX(t). (5)

The feature updating in (5) is the GRAND-l version, which is a time-invariant linear FDE. For
implementations of (5), one may direct set WD−1(or D−1W) = A(X(0)) as column- or row-
stochastic attention matrix, rather than using a plain weight. Notably, in this time-invariant setting, the
attention weight matrix, reliant on the initial node features, stays unchanged throughout the feature
evolution period.

3 Fractional-Order Graph Neural Dynamical Network

In this section, we introduce the FROND framework, a novel approach that augments traditional graph
neural ODE models by incorporating fractional calculus. We feature one specific model, wherein
the feature-updating dynamics are derived from the fractional heat diffusion process. Analytically,
we show that over-smoothing can be effectively mitigated in this context. Finally, we outline the
numerical techniques to solve FDEs pertinent to FROND.

3.1 Framework

Consider a graph G = (V,W) composed of |V| = N nodes and W the set of edge weights as
defined in Section 2.2. Analogous to the implementation in traditional graph neural ODE models,
a preliminary learnable encoder function φ : V → Rd that maps each node to a feature vector can
be applied. Stacking all the feature vectors together, we obtain X ∈ RN×d. Employing the Caputo
time fractional derivative outlined in Section 2.1, the information propagation and feature updating
dynamics in FROND are characterized by the following graph neural FDE:

Dβ
t X(t) = F(W,X(t)), β > 0, (6)

where β denotes the fractional order of the derivative, and F is a dynamic operator on the graph
like the graph neural ODE models [12–18]. The initial condition for (6) is set as X(⌈β⌉−1)(0) =
. . . = X(0) = X consisting of the preliminary node features, where ⌈β⌉ denotes the smallest integer
greater than or equal to β, akin to the initial conditions seen in ODEs. In this work, we mainly
consider β ∈ (0, 1] and the initial condition is X(0) = X. In alignment with the graph neural ODE
models [12–18], we set an integration time parameter T to yield X(T ). The final node embedding
for subsequent tasks may be decoded as ψ(X(T )) with ψ being a learnable decoder.

Specifying the operator F to the dynamics employed from the literature [12–18], fractional extensions
of graph ODE models can be derived. Due to space constraints, this paper primarily focuses on the F
dynamics as described in (4) and (5).

3.1.1 F-GRAND: Fractional Diffusion GNN

F-GRAND: Mirroring the GRAND model, the fractional GRAND (F-GRAND) is divided into two
versions. The F-GRAND-nl employs a time-variant FDE as follows:

Dβ
t X(t) = (A(X(t))− I)X(t), 0 < β ≤ 1. (7)

It is computed using X(t) and the attention mechanism A(·) derived from the Transformer model
[34]. In parallel, the F-GRAND-l version stands as the fractional extension of (5):

Dβ
t X(t) = −LX(t), 0 < β ≤ 1. (8)
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memory window width K

Figure 1: Diagrams of fractional Adams–Bashforth–Moulton method with full (left) and short (right) memory.

3.1.2 Over-smoothing Mitigation of F-GRAND

The efficacy of GNNs in node classification diminishes exponentially owing to intrinsic constraints
in their architecture and capabilities. The seminal research [35][Corollary 3. and Remark 1] has
highlighted that, when considering a GNN as a layered dynamical system, over-smoothing is a
broad expression of the exponential convergence to stationary states that only retain information
about graph connected components and node degrees. The memoryless graph neural ODE model,
GRAND-l, is demonstrated to approach asymptotic stationary states as shown in [13], with a known
exponentially rapid convergence rate [36]. In contrast, the fractional memory-dependent dynamic
model, F-GRAND-l, as described in (8), converges to stationary states at a slow algebraic rate,
thereby helping to mitigate over-smoothing. As β → 0, the convergence is expected to be arbitrarily
slow. In real-world scenarios where we operate within a finite horizon, this slower rate of convergence
may be sufficient to alleviate over-smoothing, particularly when it is imperative for a deep model to
extract distinctive features instead of achieving exponentially fast convergence to stationary states.

Theorem 1. Assuming the graph is strongly connected and aperiodic, the solution X(t) to (8)
converges to a stationary state at the rate of Θ(t−β), provided that the initial condition X(0) differs
from the stationary state.

3.2 Solving FROND

The studies by [21, 37, 38] introduce numerical solvers specifically designed for neural ODE models
when β is an integer in the FROND framework. Our research, in contrast, engages with FDEs, entities
inherently more intricate than ODEs. To address the scenario where β is non-integer, we introduce
the fractional explicit Adams–Bashforth–Moulton method, incorporating two variants employed in
this study: the basic predictor, and the short memory principle. These methods exemplify how
time persistently acts as a continuous analog to the layer index and elucidate how resultant memory
dependence manifests as nontrivial dense or skip connections between layers (see Fig. 1), stemming
from the non-local properties of fractional derivatives.

Basic predictor. Referencing [39], we first employ a preliminary numerical solver called “predictor”
through time discretisation tj = jh, where the discretisation parameter h is a small positive value:

XP(tn) =

⌈β⌉−1∑
j=0

tjn
j!
X(k)(0) +

1

Γ(β)

n−1∑
j=0

µj,nF(W,X(tj)), (9)

with coefficients µj,n outlined in [39][eq.17]. For β = 1, this method reduces to the Euler solver [21],
where µj,n ≡ h, resulting in XP(tn) = XP(tn−1) + hF(W,X(tn−1)).

Short memory principle. For large T , the non-locality of fractional derivatives complicates compu-
tations. To counter this, [40, 41] recommend applying the short memory principle, modifying the
summation in (9) to

∑n−1
j=n−K , representing a shifting memory window of fixed width K. See Fig. 1.

3.3 Connection to Existing Architectures

The FROND framework provides a generalized dynamical system perspective on existing GNN
architectures. As the time fractional order β approaches integer values, Dβ

t becomes the local integer-
order derivative, aligning FROND seamlessly with conventional graph ODE frameworks [12–18].
The various skip/dense connections used between layers in existing literature [29–32] can be viewed
as the discretization of FROND. By incorporating fractional-order dynamics and memory effects,
FROND not only provides fresh insights into GNN architectures but also promotes the advancement
of graph representation learning.
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4 Experiments

In this paper, we mainly highlight F-GRAND’s superior results and validate the slow algebraic
convergence for deeper GNNs with non-integer β < 1, as per Theorem 1. We leave fractional
differential extension of other graph ODE models like [13–18] for future work.

4.1 Node Classification of F-GRAND

Datasets and splitting. We utilize datasets with varied topologies, including citation networks (Cora
[42], Citeseer [43], Pubmed [44]), tree-structured datasets (Disease and Airport [45]), coauthor and
co-purchasing graphs (CoauthorCS [46], Computer and Photo [47]), and the ogbn-arxiv dataset [48].
We follow the same data splitting and pre-processing in [45] for Disease and Airport datasets. The
other experiment settings are the same as in GRAND [12].
Performance. As summarized in Table 1 and aligned with expectations, F-GRAND consistently
outperforms GRAND, its special case with β = 1, across all datasets, emphasizing the benefits of
integrating memorized dynamics. The advantage is especially pronounced on tree-structured datasets
like Airports and Disease, where it significantly surpasses baselines. For example, F-GRAND-l
exceeds GRAND and GIL by roughly 7% on the Airport dataset. Intriguingly, our experiments
suggest a preference for a smaller β, which implies enhanced dynamic memory, in these fractal-
structured datasets. This observation aligns with prior research [49, 26, 50, 51], which has established
that dynamical processes exhibiting self-similarity in fractal media are more precisely characterized
by fractional differential equations.

Table 1: Node classification results(%) for random train-val-test splits. The best and the second-best
result are highlighted in red and blue, respectively.

Method Cora Citeseer Pubmed CoauthorCS Computer Photo CoauthorPhy ogbn-arxiv Airport Disease

GCN 81.5±1.3 71.9±1.9 77.8±2.9 91.1±0.5 82.6±2.4 91.2±1.2 92.8±1.0 72.2±0.3 81.6±0.6 69.8±0.5
GAT 81.8±1.3 71.4±1.9 78.7±2.3 90.5±0.6 78.0±19.0 85.7±20.3 92.5±0.90 73.7±0.1 81.6±0.4 70.4±0.5

HGCN 78.7±1.0 65.8±2.0 76.4±0.8 90.6±0.3 80.6±1.8 88.2±1.4 90.8±1.5 59.6±0.4 85.4±0.7 89.9±1.1
GIL 82.1±1.1 71.1±1.2 77.8±0.6 89.4±1.5 – 89.6±1.3 – – 91.5±1.7 90.8±0.5

GRAND-l 83.6±1.0 73.4±0.5 78.8±1.7 92.9±0.4 83.7±1.2 92.3±0.9 93.5±0.9 71.9±0.2 80.5±9.6 74.5±3.4
GRAND-nl 82.3±1.6 70.9±1.0 77.5±1.8 92.4±0.3 82.4±2.1 92.4±0.8 91.4±1.3 71.2±0.2 90.9±1.6 81.0±6.7

F-GRAND-l 84.8±1.1 74.0±1.5 79.4±1.5 93.0±0.3 84.4±1.5 92.8±0.6 94.5±0.4 72.6±0.1 98.1±0.2 92.4±3.9
β for F-GRAND-l 0.9 0.9 0.9 0.7 0.98 0.9 0.6 0.7 0.5 0.6

F-GRAND-nl 83.2±1.1 74.7±1.9 79.2±0.7 92.9±0.4 84.1±0.9 93.1±0.9 93.9±0.5 71.4±0.3 96.1±0.7 85.5±2.5
β for F-GRAND-nl 0.9 0.9 0.4 0.6 0.85 0.8 0.4 0.7 0.1 0.7

4.2 Over-smoothing of F-GRAND

Figure 2: Over-smoothing mitigation.

The capability of F-GRAND to mitigate over-
smoothing and sustain strong performance across
various depths is demonstrated in Fig. 2 using the
solver (9), adhering to the fixed data split in [45].
F-GRAND-l achieves its best performance with 64
layers on the Cora dataset. Consistently across var-
ious datasets, F-GRAND-l’s performance remains
stable up to 128 layers, supporting the slow algebraic
convergence in Theorem 1. In contrast, GRAND
demonstrates a quicker decline in performance, es-
pecially notable on the Airport dataset.

5 Conclusions

We introduced FROND, a novel graph learning framework that incorporates time-fractional Caputo
derivatives to infuse memory into graph feature updating dynamics. This novel approach holds
potential for outperforming existing graph neural ODE models, as exemplified by the comparison
between F-GRAND and GRAND in this work. The resulting framework paves the way for a new
class of GNNs capable of addressing key challenges in the field, such as over-smoothing. Our results
signify a promising step towards more effective graph representation learning by capitalizing on the
power of fractional calculus.
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A Proof of Theorem 1

It is evident that for the matrix WD−1 (or D−1W), given that it is column (or row) stochastic and
the graph is strongly connected and aperiodic, the Perron-Frobenius theorem [53][Lemma 8.4.3.,
Theorem 8.4.4] confirms that the value 1 is the unique eigenvalue of this matrix that equals its spectral
radius, which is also 1. Consequently, it follows that the matrix L = I−WD−1 (or L = I−D−1W)
has an eigenvalue of 0, with all other eigenvalues possessing positive real parts. Considering the
Jordan canonical form of L, denoted as L = SJS−1, it is observed that J contains a block that
consists solely of a single 0, while the other blocks are characterized by eigenvalues λk possessing
positive real parts. WLOG, we assume the feature dimension is one and we rewrite (8) as

Dβ
t Y(t) = −JY(t) (10)

where S−1X(t) = Y(t) ∈ RN representing a transformation of the feature space, and the trans-
formed initial condition is defined as S−1X(0) = Y(0).

If the matrix L is diagonalizable, then its Jordan canonical form J becomes a diagonal matrix, with
the diagonal elements representing the eigenvalues of L. In this scenario, the differential equation
can be decoupled into a set of independent equations, each described by

Dβ
t Yk(t) = −λkYk(t). (11)

Here, Yk signifies the k-th component of the vector Y. According to [54][Theorem 4.3.], the solution
to each differential equation in the given context is represented as:

Yk(t) = Yk(0)Eβ(−λktβ) (12)

where is Eβ(·) is the Mittag-Leffler function define as Eβ(z) =
∑∞

j=0
zj

Γ(βj+1) and Γ(·) is the
gamma function. This formulation leads to two important observations:

1. For the index j such that the eigenvalue λj = 0, the solution simplifies to Yj(t) = Yj(0). This
corresponds to a stationary vector in the original space when transformed back to X(t).

2. According to [41][Theorem 1.4.], for indices k ̸= j, since λk has positive real part, the convergence
to zero is characterized by the following order:

Yk(t) = Θ(t−β).

Asymptotically, this indicates that all components Yk(t), except Yj(t), will converge to zero at an
algebraic rate. In terms of X(t), this translates into a convergence towards a stationary vector in the
eigenspace corresponding to the eigenvalue 0, while components associated with other eigenspaces
diminish at an algebraic rate.

If the matrix J is not diagonal, the entries of Y(t) corresponding to distinct Jordan blocks in J
remain uncoupled. Therefore, it suffices to consider a single Jordan block corresponding to a non-
zero eigenvalue λk. In this case, employing the Laplace transform technique becomes useful for
demonstrating that the algebraic rate of convergence remains valid. We assume the Jordan block
J(λk), associated with λk, is of size m. It follows that for this Jordan block we have

Dβ
t Y1(t) = −λkY1(t)−Y2(t),

...
...

Dβ
t Ym−1(t) = −λkYm−1(t)−Ym(t),

Dβ
t Ym(t) = −λkYm(t),

which can be solved from the bottom up. Beginning with the last equation, we obtain:
Ym(t) = Ym(0)Eβ(−λktβ) = Θ(t−β).

Further, the differential equation for Ym−1(t) is given by:

Dβ
t Ym−1(t) = −λkYm−1(t)−Ym(0)Eβ(−λktβ)

Applying the Laplace transform and referring to (3), we obtain:

L
{
Dβ

t Ym−1(t)
}
= sβYm−1(s)− sβ−1Ym−1 (0)

where Ym−1(s) is the Laplace transform of Ym−1(t). For the right-hand side of the differential
equation, we have L{λkYm−1(t)} = λkYm−1(s). Additionally, the Laplace transform of the Mittag-
Leffler function Eβ

(
−λktβ

)
known to be sβ−1

sβ+λk
[41][eq 1.80]. Consequently, the equation in the
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Laplace domain is represented as:

sβYm−1(s)− sβ−1Ym−1 (0) = −λkYm−1(s)−Ym(0)
sβ−1

sβ + λk
Rearranging this equation to isolate Ym−1(s) yields:

Ym−1(s) =
sβ−1Ym−1 (0)−Ym(0) sβ−1

sβ+λk

sβ + λk
As s→ 0, it follows that Ym−1(s) = Θ(sβ−1). Applying the same process recursively, we find that
Yi(s) = Θ(sβ−1) for all i = 1, . . . ,m. Invoking the Hardy–Littlewood Tauberian theorem [55], we
can conclude that for all indices i = 1, . . . ,m, the following relationship holds:

Yi(t) = Θ(t−β). (13)
Consequently, we can deduce that, akin to the scenarios involving diagonalizable matrices, the
feature components associated with other eigenspaces in non-diagonalizable cases also diminish at
an algebraic rate.

The proof now is complete.

10


	Introduction
	Preliminaries
	The Caputo Time-Fractional Derivative
	Diffusion Equation and Its Application to GNNs

	Fractional-Order Graph Neural Dynamical Network
	Framework
	F-GRAND: Fractional Diffusion GNN
	Over-smoothing Mitigation of F-GRAND

	Solving FROND
	Connection to Existing Architectures

	Experiments
	Node Classification of F-GRAND
	Over-smoothing of F-GRAND

	Conclusions
	Acknowledgments and Disclosure of Funding
	Proof of Theorem 1

