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Abstract

We propose approximately group-invariant neural networks for quantum many-
body physics problems. These tailored-made architectures are parameter-efficient,
scalable, significantly outperform existing symmetry-unaware neural network ar-
chitectures and are competitive with the state-of-the-art iPEPS methods as we
demonstrate on a perturbed toric code toy model on a 10× 10 lattice. This paves
way towards studying traditionally challenging quantum spin liquid problems
within interpretable neural network architectures.

1 Introduction

We focus on the problem of finding the lowest-eigenvalue eigenvector (“ground state”) of a Hamilto-
nian matrix. This problem is paramount in the many-body physics community where the ground state
governs the behaviour of quantum mechanical systems at low temperature. The challenge in finding
the ground state eigenvector is that it lies in a vector (Hilbert) space which is exponentially large in
the size of the system. This makes exact diagonalization of the Hamiltonian matrix infeasible even
for small system sizes. To deal with this exponential complexity, approximate methods such as e.g.,
tensor networks [1] or Quantum Monte Carlo [2] are traditionally used.

More recently, methods using neural networks as variational ansatze [3] have been introduced.
Ground states are found by minimizing an expectation value of the Hamiltonian matrix (energy)
within a manifold of the Hilbert space parameterized by the neural network. These neural-network-
based variational methods (known as neural quantum states or NQS) have sparked interest in the
many-body physics community due to their expressibility; in particular, the expressibility of NQS is
asymptotically ensured by a universal approximation theorem [4] and is strictly more powerful than
efficiently contractible tensor networks [5]. Furthermore, NQS have recently become state-of-the-art
for computing the ground state in certain archetypal models such as the 2D transverse field Ising
model [6] or the square-lattice Rydberg blockade model [7].

However, there are still many physical systems, whose associated Hamiltonians, remain challenging
to tackle using NQS. In the context of spin models, a particularly interesting subclass exhibiting
long-range entanglement, is that of quantum spin liquid Hamiltonians [8]. Although some progress
has been made in this direction (for example, on the J1-J2 Heisenberg model [9, 10]), in general,
finding and characterizing spin-liquid ground states remains an extremely difficult problem owing
to the inherently complicated optimization landscape [11]. A promising approach to simplify these
optimization landscapes without sacrificing the expressibility of the network is to exploit our physical
understanding of the group of emergent symmetries G associated with a particular spin-liquid. By
imposing these symmetries on the neural network via group equivariant methods [12, 9], one can
significantly reduce the number of optimization parameters. Indeed, for lattice translation or point
group symmetries (e.g. rotation), imposing such symmetries on the NQS has been crucial for finding
accurate ground states and avoiding local minima [13, 11].
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Symmetry is especially important for models expected to describe quantum spin liquids (such as Z2

lattice gauge theory), because such ground states exhibit an exponentially large “gauge” group of
emergent symmetries. Group-equivariant neural networks [14] thus yield significant improvements
over naive methods such as restricted Boltzmann machines or multi-layered perceptrons for lattice
gauge theories. Unfortunately, for more general spin liquid problems, these ground state symmetries
are only known at specific, exactly soluble points in the space of Hamiltonians. Away from these
special regions, the exactly-known symmetry operations become only approximate. It is thus
interesting to ask: is it possible to improve NQS methods for quantum spin liquids by imposing
approximate symmetries as an inductive bias?

In this work, we answer this question in the affirmative. We show that approximately-invariant
networks impose a soft inductive bias on the ground-state search while maintaining the flexibility
to capture states that are not exactly symmetric. To impose approximate symmetries on NQS, we
leverage results from the field of approximately group-equivariant networks [15, 16]. We modify
these constructions for many-body physics problems, incorporating physical insight into the nature of
the ground state (Sec. 2). In Sec. 3, we demonstrate the accuracy of our approach on a paradigmatic
quantum spin liquid model: the Z2 toric code perturbed with longitudinal and transverse fields.
In particular we demonstrate that the variational energies obtained: (i) outperform conventional
NQS methods; (ii) converge to exact diagonalization results for small system sizes; and (iii) match
state-of-the-art tensor network results for large system sizes. Finally, we discuss how the approximate-
symmetries framework can pave the road towards NQS interpretability.

2 Methods

2.1 Neural quantum states basics

We first present an overview of a general NQS framework. Consider a many-body system on N-qubits
with associated Hamiltonian H . The many-body quantum state vector |ψ⟩ may be decomposed
into a complete basis of binary vectors |s⟩ (e.g., |s⟩ = | − 1, 1, 1,−1, · · · ⟩ with 2N elements:
|ψ⟩ =

∑
s ψs|s⟩ where ψs ∈ C is a complex amplitude. The key idea of the NQS is to represent ψs

as a neural network with a complex scalar output for a particular bit string input s. We would like to
find the lowest-eigenvalue eigenvector |ψ⟩ of the Hamiltonian operator H (represented as a 2N × 2N

matrix in the basis {|s⟩}). We approach the problem variationally by turning the original problem
into an energy minimization problem with respect to the vectorized parameters W of the neural
network, minW ⟨H⟩ = minW

⟨ψ(W )|H|ψ(W )⟩
⟨ψ(W )|ψ(W )⟩ . The energy ⟨H⟩ is found by expanding the formula in

the {|s⟩} basis, and evaluating the summation through Monte Carlo Markov chain sampling [3]. The
network parameters W are optimized either via gradient descent or more complicated second order
methods, such as stochastic reconfiguration [17] (closely connected to natural gradient [18, 19]).

2.2 Group equivariant framework

In this subsection we describe the group-equivariant neural network setup for many-body physics
problems. Suppose a ground state |ψ⟩ of the Hamiltonian exhibits a particular group of symmetries
G i.e. g|ψ⟩ = |ψ⟩ ∀g ∈ G. We will assume that the basis {|s⟩} is chosen such that the group G acts
as a permutation on bit-string basis elements. In such a basis, the action of G can be written in terms
of the familiar condition of group-invariance for a neural network, ψgs = ψs; that is, two inputs of
the network connected by a symmetry element should give the same scalar output.

The usual way of imposing group-invariance on a neural network is to ensure group-equivariance
of each of its layers, Ξ : V → W , and non-linearities. In the final layer, the scalar output of the
network imposes group-invariance , i.e. Ξ(ρin(g)x) = ρout(g)Ξ(x) ∀x ∈ V, g ∈ G where V is an
N -dimensional input vector space, W is an n-dimensional output space, and ρin : G→ GL(N,C)
and ρout : G→ GL(n,C) are the input and output representations of the symmetry group G.

Here we present a general approach for imposing group equivariance within quantum many-body
physics problems. Following [20], we construct group-equivariant / group-invariant layers of the
network by using equivariant multi-layered perceptrons (EMLP). In special cases, this approach
reduces to other group-equivariant frameworks such as G-convolutional, G-steerable or deep set ar-
chitectures. We consider linear layers with dimensions O(N), which are constructed by appropriately
restricting weights of the otherwise fully-connected layer. This is feasible since the cost of imposing
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Figure 1: The approximately group-invariant NQS architecture for a perturbed toric code model.
Output of the network is ψs = χ(σ(Ω(s))). Gauge-invariant non-linearity is explicitly defined as
σp(x) =

∏
j∈p xj . Non-equivariant first layer breaks exact group-invariance.

equivariance couples only to the size of the generating set of the group [20]—at worst O(poly(N))
for the groups we consider. Due to the non-regular hidden-layer representations, one needs to ensure
that the activation functions are also equivariant. Instead of traditionally used gated/norm [21]
non-linearities, we utilize other gauge-equivariant non-linearities derived from a physical model in
mind (an example for a Z2 lattice gauge theory will be described explicitly below). Finally, in the
last layer one applies a gauge-invariant non-linearity constructed in a similar fashion.

2.3 Approximately-invariant networks

Having established how group-equivariance may be imposed in the many-body physics, we now to
turn to constructing approximately group-equivariant NQS. In particular, we ensure that |ψgs−ψs| <
ϵ ∀g ∈ G. Starting from a fully invariant neural network, ϵ = 0, one can lift the strict constraints by
adding an extra non-equivariant layer to the network or by adding a non-equivariant skip-connection
to the network. These methods are in the spirit of the previously described “combo” architecture of
[16] and “residual pathway priors” of [15], respectively. In principle, for sufficiently large invariance
breaking, ϵ, a neural network constructed in such a fashion can target any vector in the Hilbert space.
In practice, ϵ can be controlled by the size of the non-equivariant layers and how they are initialized.

3 Results

We demonstrate the usefulness of this approximately symmetric approach for a paradigmatic quantum
spin liquid problem: the Z2 toric code model under a magnetic field in the x-z plane.

We define a Z2 toric code model with N = (2L2 − 2L) qubits on the set of edges E of an
L × L square lattice (Fig. 1) with open-boundary conditions. The Hamiltonian of the model is
H = −

∑
v Av −

∑
pBp − hx

∑
iXi − hz

∑
i Zi where vertex operators Av =

∏
j∈vXj act on

qubits surrounding a particular lattice vertex v ∈ V , plaquette operators Bp =
∏
j∈p Zj act on

qubits around each fundamental plaquette p ∈ P (square) of the lattice, hx and hz are strengths of
the magnetic fields in x and z direction respectively, and Xj =

(
0 1
1 0

)
and Zj =

(
1 0
0 −1

)
are Pauli

matrices. To understand the symmetry of the quantum spin liquid ground state we hope to exploit,
notice that [Bp, Av] = 0 ∀v ∈ V, p ∈ P . It is well-understood [22, 23] that the phase diagram of the
perturbed toric code hosts a quantum spin liquid up to finite values of hx and hz . Along the hz = 0
line, the generators of the emergent Z2 gauge symmetry are precisely given by the Av operators,
i.e. |ψ⟩ fulfills Av|ψ⟩ = |ψ⟩ ∀v ∈ V . These operators form a group, G = Z×N/2

2 , which physically
corresponds to creating so-called “Wilson loops”. For any |hz| > 0, the precise form of the emergent
gauge symmetry is unknown. However, since the system is "topologically ordered", many of its
interesting properties (such as long-range entanglement and topological entanglement entropy) should
extend to a finite portion of the phase diagram, even for |hz| > 0 [24]. This means that by applying a
finite-depth unitary operation, one can transform the ground state back to the hz = 0 toric code with
exact gauge symmetries.

As discussed in Sec. 2 we construct approximately-invariant neural networks based on the combo
architecture [16]. In particular, we impose Av|ψ⟩ = |ψ⟩ gauge symmetries on the neural network
and weakly break them by first transforming the input with a non-equivariant layer. The proposed
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Figure 2: (a) Energy density convergence curve for 4×4 (N = 24) system in hx = hz = 0.2 field for
approximately-invariant networks Approx-G-equiv NQS and naive NQS methods as compared with
exact diagonalization. The relative error δE = |ENQS−EED|/EED is of order 10−5 and its scaling
with the number of non-invariant features is shown in the inset. The runtime of Approx-G-equiv NQS
on an NVIDIA V100 GPU for this system size is approximately a few minutes. (b) Energy density
convergence curve for 5 × 5, 7 × 7, and 10 × 10 systems for Approx-G-equiv NQS and iPEPS at
hx = hz = 0.1 field.

architecture, shown in Fig. 1, is defined by ψs = χ(σ(Ω(s))) where s is a bit string input, Ω : E → E
is a non-equivariant convolutional layer, σ : E → P is a gauge-invariant non-linearity and χ : P → C
is a convolutional layer. The non-equivariant convolutional layer Ω has a kernel centered at each link
of the lattice and explicitly breaks G = Z×N/2

2 symmetry. The non-linear layer, σ, is constructed
using gauge-invariant operators in the model given by products over the Bp =

∏
j∈p Zj operators

[14]. This layer ensures the gauge invariance of any further layers within the representation, since
it maps the input to the trivial representation of the symmetry group. Finally, the convolutional
layer χ consists of square-shaped kernels. We do not use any linear equivariant layers since, in an
N -dimensional vector space, they would simply be proportional to the identity.

In Fig. 2a we demonstrate the accuracy of the approximately-symmetric NQS architecture by showing
the energy convergence curves for the perturbed toric code Hamiltonian on a 4× 4 lattice. At these
small system sizes, we find excellent agreement with the result from exact diagonalization, in contrast
to conventional baseline NQS approaches (i.e. Restricted Boltzmann Machines incorporating lattice
symmetries [3, 25]). Conventional NQS are limited by the intractability of the training landscape,
and thus increasing the number of parameters does not improve the performance. On the other hand,
we do observe such an improvement for our approximately-invariant architecture (Fig. 2a inset).
Finally, in Fig. 2b, we demonstrate the scalability of our approach by plotting the energy density
for L = 5, 7, 10 (at hx = hz = 0.1) and comparing with state-of-the-art iPEPS results obtained for
L→ ∞ [26]. As expected, we see that the NQS energy approaches the iPEPS result strictly from
below as the effect of the boundary diminishes.

4 Conclusions

In this work, we have detailed the construction of approximately group-invariant neural networks for
addressing problems in quantum many-body physics with approximate symmetry. We demonstrated
the accuracy and scalability of our approach on the perturbed toric code, paving the way for tackling
challenging problems in quantum many-body physics such as U(1) spin liquids. We anticipate
that incorporating transfer learning techniques and enhancing the NQS architecture could further
improve our results. Furthermore, the choice of the NQS architecture described above allows us to
make first steps towards neural network interpretability in NQS: intuitively the non-equivariant layer
transforms the input from a a space with approximate symmetries to one with exact symmetries. This
transformation should be equivalent to a finite-depth unitary that reverts the perturbed toric code
model to its exactly-symmetric state on the phase diagram. We hope to rigorously demonstrate the
equivalence of these statements in the forthcoming work.

4



Acknowledgments and Disclosure of Funding

We thank DinhDuy Vu, Andrea Pizzi, Johannes Feldmeier, Quynh Nguyen, Rui Wang, Marc
Machaczek, Roger Melko, Ruben Verresen, Phil Crowley, Leo Lo, Marcello Dalmonte, Eun-Ah Kim,
Joaquin Rodriguez-Nieva, Lode Pollet, Arthur Pesah and Yi Tan for interesting discussions. We are
indebted to Wen-Tao Xu for providing us iPEPS data. We acknowledge support from the NSF via the
STAQ II program and the QLCI program (grant no. OMA-2016245). D.K. acknowledges support
from a Generation-Q AWS fellowship. N.Y.Y. acknowledges support from a Simons Investigator
Award.

References
[1] Jacob C Bridgeman and Christopher T Chubb. Hand-waving and interpretive dance: an

introductory course on tensor networks. Journal of physics A: Mathematical and theoretical, 50
(22):223001, 2017.

[2] Stefan Wessel. 7 monte carlo simulations of quantum spin models. Emergent Phenomena in
Correlated Matter, 2013.

[3] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial
neural networks. Science, 355(6325):602–606, 2017.

[4] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[5] Or Sharir, Amnon Shashua, and Giuseppe Carleo. Neural tensor contractions and the expressive
power of deep neural quantum states. Physical Review B, 106(20):205136, 2022.

[6] Or Sharir, Yoav Levine, Noam Wies, Giuseppe Carleo, and Amnon Shashua. Deep autoregres-
sive models for the efficient variational simulation of many-body quantum systems. Physical
review letters, 124(2):020503, 2020.

[7] Kyle Sprague and Stefanie Czischek. Variational monte carlo with large patched transformers.
arXiv preprint arXiv:2306.03921, 2023.

[8] Lucile Savary and Leon Balents. Quantum spin liquids: a review. Reports on Progress in
Physics, 80(1):016502, 2016.

[9] Christopher Roth, Attila Szabó, and Allan H MacDonald. High-accuracy variational monte
carlo for frustrated magnets with deep neural networks. Physical Review B, 108(5):054410,
2023.

[10] Zhuo Chen, Laker Newhouse, Eddie Chen, Di Luo, and Marin Soljačić. Autoregressive neural
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