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Abstract

Analysis of whole-genome sequencing data has been outpaced by the experimental
techniques that generate those datasets. The computational challenges associated
with these analyses typically make machine learning methods more suitable over
more conventional methods like dimensionality reduction, which limit the informa-
tion obtainable from a dataset. In this paper, we focus on the biophysical model
of RNA velocity, which yields meaningful insights into the functional trajectories
of individual cells. There are many downstream applications, such as the identifi-
cation of key genes driving a disease pathway. We improve the dynamical model
by relaxing unrealistic assumptions and using the resulting generative process to
train a diffusion model to compute pseudotime. Our probabilistic model is able to
quantify the uncertainty in its pseudotime predictions. Finally, we demonstrate the
efficacy of our model on a series of benchmark tasks.

1 Introduction

Single-cell sequencing is a family of techniques which provide genetic information at the resolution
of single cells. This enables understanding cellular function at a granular level, involving data types
such as gene expression counts, structural accessibility of DNA regions, or raw nucleotide sequences.
The downstream uses for such data are abundant, including the reading of DNA for cells which are
difficult to culture in a lab as well as investigating the effect of mutations on cell differentiation
trajectories [Jovic et al., [2022]. Single-cell experiments yield a collection of snapshots of cellular
states, making the task of aligning the cells meaningfully crucial to extracting information from such
datasets. This task is called pseudotime inference and is the primary focus of this paper.

Suppose that some technical accident has shuffled the frames of our favourite film. Using our
understanding of mechanics and motion, we can piece together the action sequences, as well as group
together frames depicting similar scenes. In other words, we can reconstruct a coherent order of the
frames which will closely resemble the original film. Analogously in pseudotime inference, we have
shuffled cells and seek to re-order them temporally. In this case, our hypothesis is that an expert with
knowledge of cellular dynamics could piece together the temporal ordering by looking at each cell in
the context of the population. In Figure[I] we can see that the cells follow a trajectory in terms of
mRNA splicing dynamics. This trajectory is often modelled under the framework of RNA velocity
[La Manno et al., 2018]], which estimates a cell’s pseudotime based on how the transcript counts
varies in the population according to a set of biophysical differential equations.

While it is already possible to infer this pseudotime across benchmark datasets from the literature,
current methods makes several unrealistic assumptions about the dynamics, such as quantile-derived
steady states, shared splicing rates, and discrete transcription rates [Bergen et al., 2021]]. In this work,
we relax these assumptions in order to construct a generative process which we use to create our
training dataset. Motivated by our hypothesis that temporal order is recoverable by a sufficiently
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Figure 1: Training and test tasks displayed as paired phase plots, where the left and right plots are
the ground truth and mean predictions respectively. The left plot shows a burst of transcription is
followed by splicing and mRNA decay, a metastable state, and finally another burst of transcription.
We have overlaid a red arrow to illustrate this trajectory.

trained expert, we then introduce a diffusion model capable of unshuffling cell pseudotime, and
demonstrate successful results on benchmark datasets.

2 Preliminaries

Pseudotime & RNA Velocity Pseudotime is a latent variable corresponding to the temporal state
of a cell which induces an ordering amongst a population of cells. RNA velocity is one method
of determining a pseudotime by fitting the RNA splicing dynamics to a set of ordinary differential
equations (ODEs). In this paper, we specifically define RNA velocity as the set of equations defined
below for unspliced and spliced abundances, u(t) and s() respectively. For a single gene,

du(t) ds;(t)
a4 Bult), dt

where « is the transcription rate, 3 is the splicing rate, and -y is the decay rate. Often, the splicing rate
is occasionally assumed to be the same across all genes or split in two for both equations to account
for amplification bias [Bergen et al., 2021].
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Diffusion Models Diffusion models [[Sohl-Dickstein et al. 2015} [Ho et al.l [2020] are a class
of generative models that transform samples from a simple noise distribution to a complex data
distribution with a diffusion process. The forward process progressively adds noise to the observations,
transforming the data until it matches a Gaussian prior distribution. The reverse process iteratively
denoises to generate new data samples. Mathematically, this corresponds to

forward reverse
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where (31, ..., B is the variance schedule and /1 — 3; ensures that the variance remains constant at
all timesteps. To avoid confusion, the diffusion index, ¢, is distinct from pseudotime. For a complete
definition of these terms, we revert to the formulation in|{Ho et al.|[2020]. The mean and covariance of
the forward process posterior distribution, q(x;_1|x¢,Xo), is typically modelled by a neural network.

Transformers The Transformer [Vaswani et al.,|2017]] consists of a stack of layers consisting of
multi-head self-attention and a position-wise MLP, with residual connections and layer normalisation.
For brevity, we omit the implementation details, as they have been covered extensively online. Self-
attention is a mechanism which enables each element in the sequence to focus on different parts of the
same sequence, thereby capturing dependencies regardless of their position. It is therefore capable of
capturing relationships between elements of a set—-important in our case where data is disordered.

3 Diffusion Models for Pseudotime

Data & Physical Bias Our approach does not encode biophysical equations directly in the model,
but rather learns a more flexible representation of dynamics from simulated data. The first step is



therefore to generate a set of instances based on our RNA velocity equations. In reality, this dataset
will have a different number of genes and cells to the experimentally-derived data at prediction-time.
Our model will therefore have to deal with sets rather than matrices.

We first remove some unrealistic simplifying assumptions in the standard RNA velocity formulation
[Bergen et al.,|2021], in particular the discrete transcription rate and shared splicing rate for all genes.
Instead, our simulations use continuous transcription rates as a function of time, and independent
splicing rates across genes apriori, resulting in the following set of equations for gene j:

€30 — softptus(f;(1)) — Byus (), T2 = B 0) — 5,0, ®

where f;(t) is the continuous transcription rate as a function of time and to enforce positivity,
softplus(a) = log(1l + exp(a)), since a transcription rate can never be negative. We assign a
Gaussian Process prior with RBF kernel to f;(t), and sample the splicing and decay parameters from
uniform distributions with ranges determined by looking at quantiles of the parameters determined
in the pancreas, gastrulation, and dentate gyrus datasets [Bastidas-Ponce et al., 2019} |Pijuan-Sala
et al.; 2019, [Hochgerner et al., [2018]]. Our simulated training dataset is then created using the Alfi
framework [Moss et al.,[2021]] to compute the simulations.

Since our simulations use the same temporal space, cells in the same index share the same timepoint.
A simple model would then be able to “cheat” by learning a fixed pseudotime position-wise along the
cell axis. We therefore shuffle each simulation independently, encouraging the model to learn the
reordering process itself. This led to significant generalisation improvements.

Diffusion Model Our aim is to recover the original temporal ordering of the generative process,
which we achieve with a conditional diffusion model. With G genes and C' cells, our training dataset
consists of {Xg, X}, where xo € R¥*¢ are our pseudotimes and x. € R“*¢*2 are the unspliced
and spliced transcript counts acting as our conditioning data. At prediction time, we have only
conditioning information, x}, which is used to generate pseudotime samples. Our loss function
is L = Dkp(q(x¢—1]xt,%0)||po(x¢—1|%¢)), where we learn the mean and covariance matrix of
q(X¢—1|x¢,X0) with a Transformer as described below.

During training, the forward process consists of adding noise at randomly sampled diffusion time-
points using the reparameterisation trick. We use a fixed variance schedule as previous results show
improved performance [Ho et al.,[2020||. In the reverse process at time ¢, we concatenate a sinusoidal
embedding of diffusion index, emb(t), the conditioning data x.., and the noisy observation. This
is followed by several layers of scaled dot-product self-attention. Multiple attention heads enable
the model to consider multiple weightings between cells. While we did not encounter issues with
scalability, for larger datasets with many thousands of cells, we recommend using a sparse attention
mechanism if memory becomes a bottleneck. However, this has recently been brought down to linear
in sequence length (number of cells) [Dao et al., [2022]].

The use of a Transformer is motivated by order-invariance: the order of cells should not impact the
model since our observations come as sets of cells. The Transformer, via its self-attention mechanism,
satisfies this property. Moreover, we omit the positional embeddings typically used in NLP tasks,
since we do not want positional indexing to be considered at all.

4 Results

We evaluate our approach by investigating the quantification of uncertainty, recapitulation of differ-
entiation trajectories, and the correlation of our method with existing work. We use the pancreas
endocrinogenesis dataset for benchmarking. In particular, we use the benchmark pancreas endocrino-
genesis dataset from Bastidas-Ponce et al.| [2019]], which studies the development of pancreatic
endocrine cells. We carry out velocyto [La Manno et al) 2018|] preprocessing to extract two
features: unspliced and spliced transcripts for each gene in every cell.

In Figure 2] we illustrate uncertainty in splicing dynamics by the size of the points. In boxes to either
side, we show several samples of smaller regions. Observe in the intersection (Box 2) that there
are two trajectories that could have taken place to yield such a splicing pattern. We also investigate
whether the trajectories implied by our results match with those in the literature. As shown in Figure[3]
the pseudotime suggests a progression from Ngn3, through pre-endocrine, terminating in beta and
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Figure 2: Quantification of uncertainty in the inferred pseudotimes. We generated 100 pseudotime
samples from the diffusion model and plotted the mean in the scatter plot. The size of points indicates
the sample variance. Boxes 1 and 2 show some of the low- and high-uncertainty samples respectively.
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Figure 3: Demonstration of pseudotime correlation with results from the literature. Left: differentia-
tion trajectories inferred by Slingshot on the UMAP embedding. Right: splicing dynamics phase plot
showing pseudotime inferred by our model and cell types from the dataset metadata.

alpha cells. Some terminal cell types, for example beta cells, appear to be reached at an earlier
pseudotime than alpha cells.

5 Conclusion

The contributions of this paper are two-fold: 1) we have introduced a generative process of creating
RNA velocity instances; 2) we have constructed a diffusion model to recapitulate the temporal
ordering of cells. Moreover, we have demonstrated the capabilities of our model to generalise beyond
the training distribution to real-world experimental data. Our model can also quantify the uncertainty
in pseudotime estimation.

Limitations The approach is only weakly mechanistic, with the splicing dynamics not being strictly
imposed in the model. This may, however, lead to better performance on real datasets where the
equations are too rigid. Correlations between genes are not taken into account, which could greatly
improve inferences. Extending the framework to multiple lineages is an opportunity for further work.



Related Work Our model is not to be confused with diffusion pseudotime [Haghverdi et al., [2016],
which estimates pseudotime via random walks through an embedding space. Slingshot [Street et al.,
2018]] identifies lineages using a minimum spanning tree, and fits principal curves for each through a
low-dimensional embedding of the transcriptome. However, these do not use biophysical biases nor
does it quantify uncertainty.
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