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Abstract

The Ising spin glasses model [2], a fundamental model in statistical mechanics
and condensed matter physics, providing insights into the behavior of interacting
spins within a physical system, has been studied for many decades [11, 5, 13],
while also being able to formulate many NP-hard problems [10]. However, solving
the Ising model for large and complex systems is computationally demanding
and often infeasible using traditional methods. In this paper, we present the
deterministic REINFORCE algorithm tailored for the Ising model, enabling state-
of-the-art performance through learned state transition policies. In our work, we
first formulate the Ising model with MaxCut problem as a case study. Secondly,
we propose a novel deterministic REINFORCE algorithm incorporating the Local
Search approach. Finally, we evaluate our algorithm on well-known datasets and
demonstrate state-of-the-art performance.

1 Introduction

Motivation. The Ising spin glasses model [2, 11, 13], a fundamental model in statistical mechanics,
provides valuable insights into the behavior of interacting spins within physical systems. It has been
shown that many NP-hard problems, including all of Karp’s 21 NP-complete problems [7] (such
as the MaxCut problem, 3-SAT problem and the graph coloring problem), have Ising formulations
[10]. Leveraging these insights, we adapt related methodologies to address Ising Model challenges,
offering a promising avenue for more efficient solutions.

Challenges. Prior methods, while valuable, face hurdles in handling the vast search space of
large-scale systems. Balancing accuracy with efficiency is a persistent issue. This underscores the
importance of leveraging reinforcement learning’s robust space-searching capabilities. This dual
exploitation-exploration approach holds great potential for addressing the complexities of the Ising
Model effectively.

In this paper, we propose a novel scheme for solving the Ising Model—the deterministic REINFORCE
algorithm, achieving state-of-the-art performance. Our contributions are threefold: Firstly, We have
eliminated the dynamic aspects from the environment. Secondly, we introduce the deterministic
REINFORCE algorithm, integrating the Local Search trick, thereby addressing the vast search
space of large-scale systems. Finally, we have employed large-scale parallel sampling, conduct
comprehensive evaluations on well-established datasets, consistently demonstrating state-of-the-art
performance and validating the efficacy of our proposed scheme.
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2 Problem Formulation

2.1 Ising Spin Glasses Model

The Ising model provides a framework for understanding a system of spin glasses, where each spin,
denoted as σi, can be in one of two states: σi ∈ {+1,−1}. These spins interact with their neighbors,
and this interaction is quantified by the coupling coefficient Jij . It’s important to note that spins that
are spatially distant have negligible interaction, allowing us to consider Jij as effectively zero for
non-neighboring spins. In this model, each spin σi is also influenced by an external magnetic field hi.
The energy of a spin configuration s = {σ1, σ2, ..., σn} is defined by the Hamiltonian function:

H(s) = −
∑
i<j

Jijσiσj −
∑
i

hiσi. (1)

The goal in the Ising model is typically to find the ground state, or the configuration of spins that
minimizes the Hamiltonian.

2.2 Graph MaxCut Problem

Figure 1: A Graph MaxCut
Example

Given an undirected graph G = (V,E) with n vertices, the goal of
MaxCut Problem is to partition the vertices into two sets S1 and
S2, such that the number of edges with one endpoint in S1 and the
other in S2 is maximized. Fig. 1 illustrates a graph consisting of
five vertices and six edges. A possible maximum cut is indicated
by the dashed line, which divides the vertices into two subsets: set
S1 includes the filled vertices, while set S2 comprises the unfilled
vertices. The edges that form the maximum cut are highlighted in
blue, totaling a maximum cut-size of five. Note that this graph may
have alternative configurations that also result in a maximum cut.

Equivalently, if we associate each node Vi with a binary value σi ∈
{−1,+1}, assigning +1 to nodes in set S1, and −1 to nodes in set
S2 as follows:

σi =

{
+1 if Vi ∈ S1,

−1 if Vi ∈ S2.
(2)

To represent the entire partition of vertices in the MaxCut problem,
we use a binary vector of length n, s = {σ1, σ2, ..., σn}. This vector allows us to express the cut-size
of the graph Cut(s) as:

Cut(s) =
1

2

∑
(i,j)∈E

(1− σiσj). (3)

We can express the Hamiltonian of the Ising model in a way that mirrors the objective of the MaxCut
problem. the objective is to find the ground state that minimizes the Hamiltonian H(s) = −Cut(s)
, which is equivalent to maximize the cut-size of the graph. To simplify the Hamiltonian for
computational convenience and align it more closely with the typical Ising model format, we can
remove any redundant coefficients and constant terms. The simplified Hamiltonian becomes:

H(s) =
∑

(i,j)∈E

σiσj . (4)

In this form, the Hamiltonian directly reflects the objective of the MaxCut problem within the Ising
model framework. Finding the ground state that minimizes H(s) effectively solves the MaxCut
problem by maximizing the number of cut edges

3 Reinforcement Learning Algorithm

3.1 Deterministic REINFORCE Algorithm

REINFORCE is a policy gradient algorithm in reinforcement learning. It directly adjusts policy
parameters to maximize expected rewards. It samples trajectories, computes gradients from rewards,
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and updates the policy via stochastic gradient ascent. It enables on-policy learning without the
need for a value function. The original REINFORCE algorithm [14] is considering the case of
stochastic and parameterized policy πθ. We denote the policy with the parameter θ by πθ(·|st). The
log-probability of a trajectory τ = {s0, a0, r1, s1, a1, ..., sT−1, aT−1, rT , sT } is:

logP (τ |θ) = log ρ0(s0) +

T∑
t=0

[logP (st+1|st, at) + log πθ(at|st)] . (5)

Here, we remove the dynamics of the environment, in another word, P (st+1|st, at) = 1. The state
transition is a deterministic process when the decision is made. the Log-Probability of a Trajectory is:

logP (τ |θ) = log ρ0(s0) +

T∑
t=0

log πθ(at|st). (6)

since the action is deterministic, we use the policy network to generate the transition probability to
the next state st+1 directly from the the current state st, that is, πθ(st+1|st)

logP (τ |θ) = log ρ0(s0) +

T∑
t=0

log πθ(st+1|st). (7)

In this context, we consider the distribution on each single variable and assume independence, akin to
the mean field (MF) approximation in statistical physics. By overlooking certain interdependencies
between random variables, the parameterized joint transition probability πθ(s|·) is simplified, with
each component of s treated as independent:

log πθ(s|·) =
n∑

k=1

log pθ(σk|·), (8)

we would like to optimize the policy πθ by gradient ascent θ ← θ + α∇θJ(πθ), where J(πθ) =
Eπθ

[R(τ)] is the expected return, and we take R(τ) to give the finite-horizon undiscounted return
R(τ) =

∑T
t=1 rt. In order to get a effective evaluation of the transition, we firstly implement the

local search over the state ŝ = LS(s), and use the decrease of Hamiltonian of the state after local
search rt+1 = H(ŝt)−H(ŝt+1) as the Reward. The policy πθ introduces a trajectory distribution,
the gradient term works out to:

∇θJ(πθ) =
1

N

N∑
i=1

[
T∑

t=0

(H(ŝt)−H(ŝt+1)) ·
T∑

t=0

∇θ

(
n∑

k=1

log pθ(σ
i
k,t+1|sit)

)]
. (9)

Alg. 1 gives the pseudocode of the proposed algorithm.

3.2 Implementation Tricks

Trick 1: Massively parallel simulation on GPUs. We utilized the Markov Chain Monte Carlo
(MCMC) method to achieve massively parallel simulation on GPUs. This approach significantly
enhances computational efficiency by leveraging the parallel processing capabilities of modern GPU
architectures.

Trick 2: Local search for computing advantage function. We integrate a filter scheme that
incorporates a local search technique [3], expanding the scope of our function landscape. This method
systematically explores the vicinity of the current solution, selecting the most promising neighboring
option. This refinement improves binary solutions and addresses challenges in discrete spaces.

4 Performance Evaluations

4.1 Results for Ising Spin Glasses Model

Table 1 provides a comprehensive overview of the results obtained for the Ising Spin Glasses Model
across various instances. The table includes the CPLEX Best Bound (the best solution found by
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Algorithm 1 Deterministic REINFORCE
Input : Number of epochs τ , learning rate α, number of trajectories N , trajectory length T , number

of nodes n
1 Training: policy network πθ

2 for j = 1, 2, ..., J do
3 for i = 1, 2, ..., N do
4 Generate a random starting binary vector si0 ∈ {0, 1}n

for t = 1, 2, ..., T do
5 Obtain n probabilities {pθ(σi

1,t+1|sit), pθ(σi
2,t+1|sit), ..., pθ(σi

n,t+1|sit)} by performing a
forward pass over the policy network πθ(s

i
t+1|sit)

Sample the next state sit+1 based on the obtained probabilities
Perform local search ŝit+1 = LS(sit+1)

Compute the reward rit+1 = H(ŝit)−H(ŝit+1)
6 end
7 Compute the accumulative return Ri

t =
∑T

t′=t r
i
t′+1

8 end
9 Compute policy gradient: ∇θJ(θ) =

1
N ·
∑N

i=1

∑T
t=0 R

i
t∇θ log πθ(st+1|st)

Update policy parameters: θ ← θ + α∇θJ(πθ)
10 end

Output : the best found solution s∗, and corresponding Hamiltonian H(s∗)

Table 1: Results for Ising spin glasses model.

Instances CPLEX
Best Bound

Deterministic
REINFORCE (Ours) S2V+DQN [8] MaxcutApprox [9] SDP [6]

G54100 110 110 108 80 54
G54200 112 112 108 90 58
G54300 106 106 104 86 60
G54400 114 114 108 96 56
G54500 112 112 112 94 56
G54600 110 110 110 88 66
G54700 112 112 108 88 60
G54800 108 108 108 76 54
G54900 110 110 108 88 68
G541000 112 112 108 80 54

the CPLEX 12.6.1 optimizer within a 1-hour time limit), as well as the performance of different
algorithms, including Deterministic REINFORCE (marked as Ours), S2V+DQN [8], MaxcutApprox
[9], and SDP [6]. It is evident that our Deterministic REINFORCE algorithm consistently matches the
optimal solutions for all instances, demonstrating its effectiveness and reliability. This performance
indicates that our approach is highly competitive and capable of handling complex instances of the
Ising spin glasses model.

4.2 Results for Graph MaxCut

In Table 2, we present the MaxCut results obtained using different algorithms, including Deterministic
REINFORCE (Ours), BLS [1], DSDP [4], and PI-GNN [12]. Notably, our approach consistently
outperforms the comparison algorithms across all instances. Specifically, for instances G55 and G70,
Deterministic REINFORCE achieves the best results, surpassing the performance of BLS, DSDP and
PI-GNN.
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Table 2: Results for MaxCut.

Instances Nodes Edges Deterministic
REINFORCE (Ours) BLS [1] DSDP [4] PI-GNN [12]

G14 800 4694 3064 3064 2922 3026
G15 800 4661 3050 3050 2938 2990
G22 2000 19990 13359 13359 12960 13181
G49 3000 6000 6000 6000 6000 5918
G50 3000 6000 5880 5880 5880 5820
G55 5000 12468 10298 10294 9960 10138
G70 10000 9999 9583 9541 9456 9421

5 Conclusions

In this study, we provide a new insight of reinforcement learning to solve the Ising Spin Glasses
and combinatorial optimization problem. To overcome the challenge of a vast search space, we
introduce a deterministic variant of the REINFORCE algorithm, integrating learned state transition
policies with local search strategies. Our case study on Ising Spin Glasses and the MaxCut Problem
consistently demonstrates state-of-the-art performance.

References
[1] Una Benlic and Jin-Kao Hao. Breakout local search for the max-cut problem. Engineering

Applications of Artificial Intelligence, 26(3):1162–1173, 2013.

[2] Kurt Binder and A Peter Young. Spin glasses: Experimental facts, theoretical concepts, and
open questions. Reviews of Modern Physics, 58(4):801, 1986.

[3] Cheng Chen, Ruitao Chen, Tianyou Li, Ruichen Ao, and Zaiwen Wen. Monte carlo policy
gradient method for binary optimization. arXiv preprint arXiv:2307.00783, 2023.

[4] Changhui Choi and Yinyu Ye. Solving sparse semidefinite programs using the dual scaling
algorithm with an iterative solver. Manuscript, Department of Management Sciences, University
of Iowa, Iowa City, IA, 52242, 2000.

[5] Arthur E Ferdinand and Michael E Fisher. Bounded and inhomogeneous ising models. i.
specific-heat anomaly of a finite lattice. Physical Review, 185(2):832, 1969.

[6] Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM),
42(6):1115–1145, 1995.

[7] Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.

[8] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in Neural Information Processing Systems, 30,
2017.

[9] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.

[10] Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics, 2:5, 2014.

[11] Marc Mézard, Giorgio Parisi, and Miguel Angel Virasoro. Spin glass theory and beyond: An
Introduction to the Replica Method and Its Applications, volume 9. World Scientific Publishing
Company, 1987.

[12] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization
with physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

[13] David Sherrington and Scott Kirkpatrick. Solvable model of a spin-glass. Physical Review
Letters, 35(26):1792, 1975.

5



[14] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256, 1992.

6


	Introduction
	Problem Formulation
	Ising Spin Glasses Model
	Graph MaxCut Problem

	Reinforcement Learning Algorithm
	Deterministic REINFORCE Algorithm
	Implementation Tricks

	Performance Evaluations
	Results for Ising Spin Glasses Model
	Results for Graph MaxCut

	Conclusions

