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Abstract

We introduce a general method for computing partition functions in unnormalized
density models. This approach also allows for the reconstruction of thermodynamic
functions and phase boundaries in two-parameter statistical mechanics systems,
eliminating the need for knowledge of the system’s energy. Our method is based
on expressing the Fisher metric in terms of the posterior distributions over a space
of external parameters and approximating the metric field by a Hessian of a convex
function. We use the proposed approach to reconstruct the partition functions
and phase diagrams of the Ising model and the exactly solvable non-equilibrium
TASEP without any a priori knowledge about microscopic rules of the models,
just assuming it is possible to sample from equilibrium (respectively, steady state)
distribution for a given set of external parameters.

1 Introduction

Machine learning methods have been actively used for the study of models of classical and quantum
statistical physics (1; 2; 3; 4; 5), mostly focusing on localization boundaries between phases and
phase transition locations and extracting the learned order parameters. Every equilibrium statistical
mechanics model is a probabilistic mapping from a set of macroscopic external parameters t to a
(very multidimensional) microscopic state s and can be thought about as a conditional probability
distribution P(s|t). If this distribution belongs to the exponential family the problem of determining
"order parameters" is equivalent to the search of the so-called sufficient statistics (6; 7).

Existing methods for approximating the partition function or its logarithm, also known as free energy,
such as importance sampling (8), annealed importance sampling (9), and variational autoregressive
networks (10), require explicit knowledge of the Hamiltonian (energy or unnormalized density) of
the system. However, it is easy to imagine situations when one can sample from the distribution
of microstate of a system, whose Hamiltonian is either unknown or, as is often the case in the
steady-states of nonequilibrium models like Totally Asymmetric Simple Exclusion Process (TASEP),
does not exist. For such systems, it is possible to apply neural methods to extract sufficient statistics
(6; 7). However, order parameters learned in such a way may not be easy to interpret.

In this paper, we address a broader issue of reconstructing the free energy and thermodynamic
functions of a given statistical physics model without explicit knowledge of its Hamiltonian. The
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solution should comply with conventional thermodynamic relations and subsequently lead to better
interpretability.

2 Bayesian Thermodynamic Integration

2.1 Fisher metric and posterior distribution

Given a set of external macroscopic parameters t the probability distribution over microstates
P(s|t) in equilibrium statistical mechanics is known to be given by the Gibbs distribution P(s|t) =
Z−1(t) exp[H(s|t)] where Z(t) =

∑
s exp[H(s|t)] is the normalization constant known as the

partition function of the model, and the function H(s|t) typically has a clear microscopic meaning
and is referred to as the Hamiltonian of the model. The main problem of interest to statistical physics
is the study of phase transitions. They correspond to sharp changes in typical microstates with a
gradual change in external parameters, i.e., sharp changes of the probability distribution P(s|t)) with
the change of parameter t. It is conventional to quantify the rate of change of a probability distribution
with Fisher information metric G(t) defined as

G(t) =
∫

P(s|t)∇t logP(s|t)(∇t logP(s|t))T ds (1)

Phase transitions can be thought of as points at which, in the limit of a large system size, the Fisher
metric becomes singular. For instance, in the case of a 2D Ising model with only a single temperature
parameter, the solitary component of the Fisher metric is the magnetic susceptibility, which diverges
near the critical temperature.

Here we presume that, despite not knowing the distribution P(s|t) explicitly, we can sample from it
through a given simulation algorithm. Moreover, the labels t are themselves chosen randomly from
some distribution P (t) (in the examples of Section 3 we typically choose P (t) to be a flat distribution
over some compact domain in the space of parameters). As a result, we are sampling pairs

(si, ti) ∼ P(s|t)P (t), (2)

where ∼ sign here and below designates sampling from the corresponding distribution. Define now,
according to the Bayes formula, the posterior distribution Π(t|s) on the space of external parameters
given an observed microstate

Π(t|s) = P(s|t)P (t)
P (s)

(3)

where P (s) =
∑

t′ P(s|t
′)P (t′) is the probability of observing microstate s in the sampling procedure

(2). This posterior distribution, Π(t|s), functions as a "probabilistic thermometer": it examines a
microstate s and provides a probabilistic estimate of the external parameters (such as temperature)
under which the microstate was generated.

Taking the derivative of the logarithm of (3) gives ∇t log Π(t|s) = ∇t logP(s|t) +∇t logP (t), i.e.,
the derivative of P(s|t) in the definition of the Fisher metric can be expressed in terms of the derivative
of the posterior distribution and the known derivative of P (t) (in the simplest case when P (t) is
a constant in some compact domain, ∇t logP (t) = 0 except for the domain boundary). Thus, if
we manage to approximate the posterior distribution Π(t|s) the Fisher information metric can be
estimated as

G(t) ≈ 1

N

N∑
k=1

∇t log Π(t|sk)(∇t log Π(t|sk))T , where sk ∼ P(s|t), k = 1, . . . , N. (4)

2.2 Approximation of the Posterior

Our task now is to estimate the posterior distribution Π(t|s) using the set of samples tk, sk. To do that,
we are trying to approximate Π(t|s) by representatives from some parametric family of distributions
Πθ(x|y), choosing θ to maximize some cost function (here as Πθ we use an image-to-image network
with U2-Net architecture (11), which transforms a 2d microstate into a 2d probability distribution on
a discrete uniform grid). It is conventional to choose the cost function to maximize the likelihood of
the true external parameters ti given si over all samples in the set. The minimization of the negative
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log-likelihood is equivalent to minimization of the KL divergence between the target distribution
Ptarget(t|t′) and the predicted distribution Pθ(t|t′) =

∫
Πθ(t|s)P(s|t′)ds:

L1(θ) = Et′∼P (t)KL (Ptarget(t|t′)||Pθ(t|t′)) , θoptimal = argmin
θ
L1(θ) (5)

As a target distribution it seems natural to choose Ptarget(t|t′) = δ(t− t′) (i.e., the reconstructed labels
t are identical to the input labels t′). However, in practice, to avoid singularities it is convenient
to replace this “hard label” target distribution with a smoothened distribution Ptarget(t|t′) = C ·
exp

(
−σ−2||t′ − t||2/2

)
, where σ is a smoothening parameter and C is the normalizing constant. In

what follows, to avoid overfitting we use tuples of microstates with macroparameters close to a given
t′ as a learning sample; in this case it is natural to choose σ of the same order as the uncertaintly of t′
within the tuple.

The distribution Pθ(t|t′) obtained as a result of the minimization, can in principle be used as input
of formula (4) for the approximation of the Fisher metric. However, its derivative-dependent nature
makes it noisy, so to make the approach workable we further approximate Pθ(t|t′) with a distribution
from an exponential family Pw(s|t) = exp[f(s)T t]Z−1

w (t), parameterized by an Input Convex Neural
Network (ICNN) (12) (w here is a set of parameters of the ICNN). If our prior is uniform, the posterior
distribution in the case of exponential family takes the form

Πw(t|s) =
Pw(s|t)P(t)∫
Pw(s|t′)P(t′)dt′

=
exp[f(s)T t− logZw(t)]∫
exp[f(s)T t′ − logZw(t′)]dt′

(6)

Notably, when reconstructing Zw(t) we do not know the functions f(s). We know, however, that
their averages at a given t’ are equal to the derivatives of logZw at this t′:

f(t′) ≈ 1

K

K∑
k=1

f(sk) ≈ ∇t′ logZ(t′), sk ∼ P(s|t) (7)

This allows us to define the posterior distribution averaged over a set of microstates generated with
the same macroscopic parameters t′

Pw(t|t′) =
exp

[
tT (∇t′ logZw(t′))− logZw(t)

]∫
exp

[
t′′T (∇t′ logZw(t′))− logZw(t′′)

]
dt′′

(8)

To find parameters w we minimize Jensen-Shannon divergence between posterior Pθ(t|t′) predicted
using maximum likelihood as described above and posterior Pw(t|t′)):

L2(w) = Et′∼P(t)JSD (Pθ(t|t′),Pw(t|t′)) , woptimal = argmin
w
L2(w) (9)

The resulting approximation for the Fisher metric is G(t) = ∇tt logZwoptimal(t).

3 Numerical experiments

3.1 Ising model

Here we use our approach to reconstruct thermodynamic functions for the 2D Ising model (13), which
is an equilibrium statistical mechanics model with exponential distribution over the microstates.

We use image-to-image network with U2-Net architecture (11) to approximate the posterior Πθ(t|t’)
in the nodes of a 2d uniform grid D. As an input, the network takes a tuple of Kbundle images (
concatenated across channel dimension), representing microstates equilibrated at values of external
parameters in the viticinty of t’. Tuples are used to artificially augment the training data and to reduce
over-fitting, separate Kbundle-nearest neighbour graphs are computed to construct input tuples for
both the train and test datasets. Output consists of the posterior probability densities Πθ(t|t’) in
discrete grid points. For all experiments the training was performed on a single Nvidia-HGX compute
node with 8 A100 GPUs. We trained U2-Net using Adam optimizer with learning rate 0.00001 and
batch size of 2048 for NU2Net steps = 20000 gradient update steps. In all experiments the training set
consists of 80% of samples and the other 20% are used for testing.

Moreover, given the posterior distribution, we use ICNN (12) architecture, which has 5 layers with
hidden dimension 512, to approximate the free energy. We train it using Adam optimizer with
learning rate 0.001. Reconstructed free energy is shown in Figure 1 A. The model was able to
correctly determine 1st order phase transition line T < Tcr and H = 0.
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A: B:

Figure 1: The results of the free energy reconstruction for (A) the 2D Ising and (B) the TASEP
models. (A). (top row) Partial derivatives of the reconstructed free energy with respect to temperature
(left) and magnetic field (right), (bottom row) energy E(H,T ) =

∑
⟨i,j⟩ si(H,T )sj(H,T ) (left) and

magnetization M(H,T ) =
∑

i si (right) of the Ising model, (right) reconstructed free energy. (B)
(left): reconstructed (red) “free energy” FTASEP compared to the exact solution (10) (blue), (right):
reconstruction error (red) vs. exact solution.

3.2 Totally asymmetric simple exclusion process

Totally asymmetric simple exclusion process (TASEP) is a simple model of transport phenomena,
where discrete particles jump to the right on a 1d lattice with rate dt provided that exclusion condition
(no more than 1 particle per lattice cite) is satisfied. At leftmost site a particle is added with probability
αdt per time dt provided that it is empty and at rightmost site particle is removed with probability βdt
per time dt provided that it is occupied. This model is exactly solvable, it is known to achieve a steady
state with a rich behavior depending on (α, β) (14; 15; 16): three distinct phases - the low-density
phase, the high-density phase and the maximal current phase are possible, and the asymptotic "free
energy" which is defined as FTASEP(α, β) = limM→∞ M−1 logZ(α, β) and coincides with average
flow per unit time, equals

FTASEP(α, β) =


1
4 , α > 1

2 , β > 1
2 ;

α(1− α), α < β, α < 1
2 ;

β(1− β), β < α, β < 1
2 .

(10)

where the first, second and third cases correspond to maximal current, high density and low density
cases, respectively.

The setups for posterior approximation and free energy approximation are similar to those in the Ising
model. The comparison between the reconstructed free energy and the exact analytical solution is
shown in Figure 1 B.

4 Discussion

We propose a new approach to reconstructing thermodynamic functions (partition function, free
energy and their derivatives) as functions of the macroscopic external parameters, and apply it to
exemplary two-parametric statistical mechanics models. Our method is based on expressing the Fisher
metric on the manifold of probability distributions over a high-dimensional space of microstates
through the posterior distributions over a space of external parameters. Log-partition function is
obtained by approximating the metric field by a Hessian of a convex function parametrized by an
ICNN.

The proposed approach is used to reconstruct the partition functions and phase diagrams of the
equilibrium Ising model and the steady state of the non-equilibrium TASEP model with open
boundary conditions. Our approach does not use any a priori knowledge about Hamiltonian of the
models, it only needs an algorithm to sample microstates for given values of the external parameters.
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5 Supplementary Material

5.1 Ising model dataset generation

We consider a 2D Ising model (13), which is an archetypal model of phase transitions in statistical
mechanics. A microstate of this model is a set s of spin variables si = ±1 defined on each vertex of
a square lattice of size L× L. At equilibrium probability distribution over the space of microstates is

P(s|H,T ) =
1

Z(H,T )
e−β

∑
⟨i,j⟩ sisj−βH

∑
i si (11)

where H and T = 1/β are external parameters called magnetic field and temperature, respectively,
the first sum is over all edges of the lattice, and Z(H,T ) is a normalization parameter known as a
partition function:

Z(H,T ) =
∑

s1=±1

· · ·
∑

sN=±1

e−β
∑

⟨i,j⟩ sisj−βH
∑

i si . (12)

This model is exactly solvable for H = 0 (17; 18; 19). In particular, it is known that at Tcr =
2

log(1+
√
2)
≈ 2.269 a transition occurs between the high-temperature disordered state, where spin

variables are on average equal zero, and the low-temperature ordered state in which average value of
spin becomes distinct from zero. For general values of H ̸= 0 partition function is intractable.

Our dataset consists of N = 540000 samples of spin configurations on the square lattice of size
L × L = 128 × 128 with periodic boundary conditions. We consider the parameter ranges T ∈
[Tmin, Tmax] = [1, 5], H ∈ [Hmin, Hmax] = [−2, 2] similar to the ranges used in (20). Point
(T,H) is sampled uniformly from this rectangle, and then a sample spin configuration is created
for these values of temperature and external field by starting with a random initial condition and
equilibrating is with Glauber (one-spin Metropolis) dynamics for 104 × 128 × 128 ≈ 1.64 × 108

iterations. We represent spin configuration as a single-channel image with values +1 and −1. When
constructing target probability distributions we choose σ = 1

50 and set the discretization D of the
square [Tmin, Tmax]× [Hmin, Hmax] = [1, 5]× [−2, 2] to be a uniform grid with L×L = 128× 128
grid cells.

5.2 TASEP model dataset generation

Totally asymmetric simple exclusion process (TASEP) is a simple model of 1-dimensional transport
phenomena. A microscopic configuration is a set of particles on a 1d lattice respecting the condition
that there can be no more than one particle in each lattice cell. Each particle can move to the site to
the right of it with probability pdt per time dt provided that it is empty (we put p = 1 without loss of
generality). When complemented with boundary conditions, the TASEP attains a stationary state as
time goes to infinity.

One particular case is open boundary conditions, when a particle is added with probability αdt per
time dt to the leftmost site provided that it is empty and removed with probability βdt per time dt
from the rightmost site provided that it is occupied. For this boundary condition the probability
distribution is known exactly (14; 15; 16) and it once again takes the form

P(s|α, β) = f(s|α, β)
Z(α, β)

; Z(α, β) =
∑
s

f(s|α, β); (13)

where microstate s is a concrete sequence of filled and empty cells, and f(s|α, β) is some function
of s and external parameters α, β. Importantly, however, the function f , which is known exactly for
all system sizes M and all values of s, α, β does not take the form (??). TASEP with free boundaries
exhibits a rich phase behavior: for large system sizes three distinct phases - the low-density phase,
the high-density phase and the maximal current phase are possible depending on the values of α, β,
and the asymptotic "free energy" which is defined as

FTASEP(α, β) = lim
M→∞

M−1 logZ(α, β) (14)

and coincides with average flow per unit time, equals

FTASEP(α, β) =


1
4 , α > 1

2 , β > 1
2 ;

α(1− α), α < β, α < 1
2 ;

β(1− β), β < α, β < 1
2 .

(15)
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where the first, second and third cases correspond to maximal current, high density and low density
cases, respectively.

We generate a dataset of N = 150000 stationary TASEP configurations on a 1d lattice with M =
16384 sites. The rates α(β) of adding (removing) particles at the left(right) boundary are sampled
from the uniform prior distribution over a square [0, 1]× [0, 1]. To reach the stationary state we start
from a random initial condition and perform Nsteps = 2 × 109 ≈ 8M2 move attempts, which is
known to be enough to achieve the stationary state except for the narrow vicinity of the transition line
α = β < 1/2 between high-density and low-density phases (in this case the stationary state has a
slowly diffusing front of a shock wave in it, one needs of order M2 move attempts to form the shock
but of order M3 move attempts for it to diffusively explore all possible positions of the shock).

We reshape 1d lattice with M = 16384 sites into an image of size L×L = 128×128 using raster scan
ordering. To construct target probability distributions we set σ = 1

150 and define the discretization
D as a uniform grid on [αmin, αmax]× [βmin, βmax] = [0, 1]× [0, 1] with L× L = 128× 128 grid
cells.

5.3 Algorithms

We summarize the procedure described in the section 2 by two algorithms outlined below, the first one
generates the training dataset (1), the second one finds the approximations for the partition function
and the Fisher metric (2).

Algorithm 1: Dataset Generation for Bayesian Thermodynamic Integration
Input:

P(s|t) - likelihood function represented by an algorithm to sample data,
P(t) - uniform prior distribution on the space of external parameters,
Ndataset - dataset length,
σ2 - variance of the target gaussian distribution,
D = {̂t1, . . . , t̂ND} - a discretization of the support of the uniform prior distribution P(t).
Lsam = [] - list of input samples,
Lpar = [] - list of external parameters,
Ltar = [] - list of target posterior distributions

for i = 1 to Ndataset do
sample ti ∼ P(t) and append ti to Lpar
sample si ∼ P(s|ti) and append si to Lsam

p
(i)
tar = [] - discretized target probability distributions

for j = 1 to ND do
p
(i)
tar [j] = exp

(
− 1

2σ2 ||̂tj − ti||2
)

end for
p
(i)
tar = normalize(p(i)tar ) and append p

(i)
tar to Ltar

end for
Output:

Lsam - dataset of input samples,
Lpar - dataset of external parameters,
Ltar - dataset of target posterior distributions
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Algorithm 2: Bayesian Thermodynamic Integration
Input:

Lsam - train dataset of input samples,
Lpar - train dataset of external parameters,
Ltar - train dataset of target posterior distributions,
Kbundle - bundle size or the number of nearest neighbours,
NU2Net steps - steps for posterior approximation.
NICNN steps - steps for free energy approximation.
Πθ(t|s1, . . . , sKbundle) - image-to-image neural network with U2-Net architecture with output

shape equal to the shape of elements of Ltar,
Lneib = [] - list of Kbundle nearest neighbors of points in Lpar.

Lneib = KNN(Lpar,Kbundle, include_self=True)
for i = 1 to NU2Net steps do

choose t′ randomly from Lpar
s(t′) = (s1, . . . , sKbundle) shuffle and concatenate Kbundle microstates corresponding to the
nearest neighbors of t′ taken from Lneib

Ptarget =
1

Kbundle

∑
t̂∈Neib(t′) Ltar[index(̂t)]

L(θ) = Et′∼P(t)KL(Ptarget(t|t′)||Πθ(t|s(t′)))
θ ← Adam(θ,∇θL(θ))

end for
Zw(t) - input convex neural network,

for i = 1 to NICNN steps do

P(eq)
w (t|t′) = e(∇t′ log Zw(t′))T t−log Zw(t)∫

e(∇t′ log Zw(t′))T t−log Zw(t)dt

L(w) = Et′∼P(t)JSD
(
Πθ(t|s(t′)),P(eq)

w (t|t′)
)

w ← Adam(w,∇wL(w))
end for
Output:

F (t) = logZw(t) - approximated free energy,
G(t) = ∇tt logZw(t) - approximated Fisher metric.

KNN = k-nearest neighbors
KL = Kullback–Leibler divergence
JSD = Jensen–Shannon divergence
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5.4 Examples of microstates

Figure 2: Examples of the microstates of the 2D Ising model, temperature increases from right to left,
magnetic field increases from bottom to top.
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Figure 3: Examples of microstates of the stationary state TASEP. The microstate is presented in raster
ordering, the cell numbers increase downwards from row to row, and rightwards within a row. α
and β increase from bottom to top and from left to right, respectively. Once can clearly see the high
density (left), low-density (bottom) and maximal current (density = 1/2, top right) phases.
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5.5 Learned posterior distributions for 2D Ising model

Figure 4: (left) Uniform prior distribution on the square [Tmin, Tmax] × [Hmin, Hmax] = [1, 5] ×
[−2, 2]. (center) Observed microstate of the Ising model generated for T = 2.04, H = −0.613.
(right) Posterior distribution on the square [Tmin, Tmax]× [Hmin, Hmax] predicted by U2Net.

Figure 5: (left) Uniform prior distribution on the square [Tmin, Tmax] × [Hmin, Hmax] = [1, 5] ×
[−2, 2]. (center) Observed microstate of the Ising model generated for T = 3.32, H = 0.0884.
(right) Posterior distribution on the square [Tmin, Tmax]× [Hmin, Hmax] predicted by U2Net.

Figure 6: (left) Uniform prior distribution on the square [Tmin, Tmax] × [Hmin, Hmax] = [1, 5] ×
[−2, 2]. (center) Observed microstate of the Ising model generated for T = 3.01, H = −1.09. (right)
Posterior distribution on the square [Tmin, Tmax]× [Hmin, Hmax] predicted by U2Net.
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