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Abstract

High-fidelity computational simulations and physical experiments of hypersonic
flows are resource intensive. Training scientific machine learning (SciML) models
on limited high-fidelity data offers one approach to rapidly predict behaviors for
situations that have not been seen before. However, high-fidelity data is itself in
limited quantity to validate all outputs of the SciML model in unexplored input
space. As such, an uncertainty-aware SciML model is desired. The SciML model’s
output uncertainties could then be used to assess the reliability and confidence of
the model’s predictions. In this study, we extend a deep operator network (Deep-
ONet) using three different uncertainty quantification mechanisms: mean-variance
estimation (MVE), evidential uncertainty, and ensembling. The uncertainty aware
DeepONet models are trained and evaluated on the hypersonic flow around a blunt
cone object with data generated via computational fluid dynamics over a wide range
of Mach numbers and altitudes. We find that ensembling outperforms the other
two uncertainty models in terms of minimizing error and calibrating uncertainty in
both interpolative and extrapolative regimes.

1 Introduction

Scientists and engineers gain understanding of large, complex systems like weather [1] and flight
vehicles [2] by analyzing databases of how these systems behave, based on input parameters. These
instances can be obtained via high-fidelity sources like computational simulation or physical experi-
mentation. However, it is typically infeasible to obtain such data for every parameter configuration of
interest. Further data can be generated by scientific machine learning (SciML) models that rapidly
predict systems behavior for parameters not currently found in databases [3, 4, 5].

Because the high-fidelity ground truth is limited in quantity, it may not be sufficient to enable training
of SciML models that can make predictions for the entire parameter space. This motivates the further
incorporation of uncertainty quantification (UQ) into these SciML models [6, 7]. Uncertainties can
be used to assess the reliability of predictions, and they can also be used to drive targeted acquisition
of further data in an active learning loop [8, 9].

In this paper, we extend the deep operator network (DeepONet) [3] using three different UQ mech-
anisms: mean-variance estimation (MVE) [10], evidential uncertainty [11, 12, 13], and ensem-
bling (Section 2.2). We evaluate these models on data generated by the steady-state compressible
Navier-Stokes equations (NSE) with a non-uniform geometry based on a hypersonic flight vehicle
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(Appendix B) in both interpolation and extrapolation settings (Section 3). Although calibration in
the extrapolation setting remains challenging to achieve, ensembling consistently outperforms other
methods. This echoes findings in fields like chemistry [14] and motivates further development of
probabilistic operator networks, especially those capable of extrapolating across parameter spaces.

Prior to the development of modern operator networks, UQ has been used in engineering fields to
accelerate efficient data acquisition. Frequently, techniques like Gaussian process regression are used
to predict a single target property like a drag coefficient, based on a small number of input parame-
ters [2]. Here we consider the more general challenge of predicting pointwise uncertainties associated
with a spatially-varying field like velocity. These pointwise uncertainties can still be aggregated into
an acquisition function (e.g., [8]), or they can be analyzed in their own right (e.g., [15]).

2 Methods

2.1 Problem setup

We consider a general setting in which our training dataset D consists of measurement sets
(X,W d, ψd), d = 1, . . . , D, where X = {xn}Nn=1 ⊆ Ω ⊆ RNx is a spatial mesh over a possibly-
irregular geometry Ω, shared across all measurement sets, W d = {wdn}Nn=1 ⊆ RNw is a set of state
variables values (with wdn the value at mesh point xdn), and ψd ∈ RNψ is a parameter vector. We learn
a set of predictive models ŵℓ, one for each state variable ℓ = 1, . . . , Nw.

In our setting (Appendix B), data satisfy a set of compressible NSE defined over a 3D axisymmetric
geometry based on the Radio Attenuation Measurement (RAM)-C II flight vehicle [16, 17]. Due
to the axisymmetry, there are two spatial degrees of freedom. The state variables are: x-velocity
(u1), y-velocity (u2), density (ρ), and temperature (T ). The parameter vector ψ has two components:
Mach number and altitude. Figure 1 demonstrates an example solution for this system.

Figure 1: We show the four state variables that are solved for the axisymmetric geometry (Appendix B).
This solution corresponds to Mach 25 and altitude 46 km.

2.2 Deep operator networks

To solve the RAM-C II fluid flow problem, we rely on the DeepONet [3] model. For a state variable
ℓ, the DeepONet ŵℓ is a composition of multi-layer perceptrons (MLPs):

(x, ψ)
ŵℓ7→ fd(fx(x)⊙ fψ(ψ)), (1)

where ⊙ is element-wise multiplication, fx is an encoder for the spatial points x, fψ is an encoder
for the parameters ψ, and fd is a decoder for the predicted state variable. MLPs have tanh activation
functions. Each ŵONet

ℓ is trained by using stochastic gradient descent (SGD) and Adam [18], over
tuples (xn, ψd, wdn) to minimize the squared errors |wdn,ℓ − ŵONet

ℓ (xn, ψ
d)|2.

We extend the DeepONets with MVE [10], evidential [12], and ensemble [19] UQ methods. Each
enables the DeepONets to output a mean µℓ and standard deviation σℓ, associated with a specified
spatial point x and parameter configuration ψ. Precise formulations for each UQ approach are
standard, but we give them for reference in Appendix D.

3 Results

We evaluate models with respect to prediction error and uncertainty calibration for both in-domain
(interpolating) and out-of-domain (OOD) (extrapolating) settings. Model error is measured with
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Figure 2: Average relative errors interpolating (in-domain) and extrapolating (OOD) for the four
model types across state variables. When interpolating, the ensemble model has the lowest error,
with the deterministic model a close second. When extrapolating, the four models perform more
similarly, although on average, the ensemble model has the lowest error. For both interpolation and
extrapolation, the MVE and evidential models have worse spread and error when predicting T and
u2, respectively. The bars indicate average error across the domain’s test set for a given parameter.
The error bars are the inter-quartile range of the errors across the domain’s test set. The ensemble
model performs best when averaging over state variables in all domains, too (Table 1 in Appendix A).

the relative error between a simulation’s predicted and ground truth state variables, measured in
the normalized state variable space. We also compare the probabilistic DeepONets to a single
(deterministic) DeepONet. Calibration is assessed using miscalibration area, as implemented in the
Uncertainty Toolbox [20]. A higher miscalibration area means the model’s calibration is worse.

Our dataset (Appendix B) solves the system’s behavior across variation in the parameter vector
ψ = (Mach, altitude), where Mach ∈ {10, 11, . . . , 30} and altitude ∈ {20, 22, . . . , 60}, in units
of kilometers. This yields a total of 441 simulations. We define the in-domain parameter regime as
those simulations having parameters ψ ∈ [12, 28]× [26, 54] (255 simulations). The OOD parameter
regime is subdivided into four regions: high Mach (ψ ∈ {29, 30} × {20, 22, . . . , 60}), low Mach
(ψ ∈ {10, 11, 12} × {20, 22, . . . , 60}), high altitude (ψ ∈ {10, 11, . . . , 30} × {56, 58, 60}, and low
altitude (ψ ∈ {10, 11, . . . , 30}×{20, 22, 24}). For evaluating in-domain interpolation and comparing
it to out-of-domain extrapolation, we sample 50 simulations from the in-domain regime to use as a
test set. All models use the same hyperparameters and training settings (Appendix C).

In Figure 2, we show that, in-domain, the ensemble model has the lowest errors for all state variables,
with the deterministic model a close second. The MVE and evidential model have significantly
higher errors across all state variables. Out-of-domain, all models perform more similarly, but on
average, the ensemble model still has lower error. Turning to uncertainty calibration in-domain, the
ensemble model has by far the best calibration (Figure 3). As training epochs increase, we observe
that evidential model does not converge to meaningful uncertainty magnitudes. Out-of-domain, the
ensemble model again has the best calibration of the three models.

None of the models have good calibration for u1 when extrapolating. To understand why, we plot
prediction error and uncertainty spatially (Figure 4), which reveals that uncertainty and error are
spatially correlated. Regions of higher error and uncertainty are in regions in which u1 changes
rapidly over small spatial distances (i.e. at the hypersonic bow shock, in the boundary layer at the
front tip of the cone, and at the surface boundary of the blunt cone). This implies that the DeepONet
has difficulty fitting rapid spatial changes in state variables.

4 Conclusion

We extend the DeepONet with three different UQ mechanisms: MVE, evidential uncertainty, and
ensembling. We observe that the ensemble model outperforms both other UQ mechanisms in the
in-domain (interpolative) and OOD (extrapolative) regimes for a case study on predicting u1, u2, ρ,
and T in the hypersonic flow around a blunt nose cone at various Mach numbers and altitudes. For
the ensemble model, higher uncertainty is spatially correlated with higher error, which both tend to be
concentrated in regions of large changes in state variable values over small distances. This motivates
further research into the use of models that inherently account for nonlocal phenomena, such as
neural basis functions (NBFs) [5], POD-DeepONets [21], and Fourier neural operators (FNOs) [4].
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Figure 3: Uncertainty miscalibration areas interpolating (in-domain) and extrapolating (OOD) for
the three probabilistic model types across state variables. When interpolating, the ensemble model
has the lowest miscalibration area, which means that the uncertainties are well calibrated. The
MVE and evidential models have significantly higher miscalbration areas. When extrapolating, the
ensemble model has the lowest miscalibration area. No model has good uncertainty calibration
when extrapolating for u1. Interestingly, the evidential model has significantly lower miscalibration
area than the MVE model for all state variables in-domain and for u1 OOD than the other two
models, implying that the evidential model has better uncertainty calibration. In fact, for some spatial
points, the evidential model predicts large uncertainties of order 104 for u1 and u2 and 101 for ρ
and T (Figure 5 in Appendix A), meaning that the evidential model is not converging on calibrated
uncertainties. This is not captured by miscalibration area since it is insensitive to small numbers
of outlier uncertainties. These uncertainties are far too large, as all state variables are normalized
by mean and standard deviation of the train set before training, and thus, are all order ~1. The
bars indicate the miscalibration area across the test domain. The error bars in extrapolation are the
standard deviation of miscalibration area across the four extrapolation regimes (high Mach, high
altitude, low Mach, low altitude).

Figure 4: Spatial regions of higher uncertainty are correlated to regions of higher pointwise, absolute
error in prediction for u1. Darker points in both plots correspond to higher magnitudes of error and
uncertainty. In the error plot, regions of relatively high error (> 0.5) are highlighted in black. Higher
error and uncertainty regions are concentrated where state variables rapidly change in value over
short distances and at discontinuities (i.e. at the bow shock and at the surface boundary). This plot is
from the in-domain test set, with Mach number 25 and altitude 46 km. Similar trends were observed
across state variables and parameters.
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A Supplemental figures and tables

Figure 5: The evidential model does not converge on calibrated uncertainties. All data is normalized
by mean and standard deviation, so predicted values are of magnitude ~1. The evidential model
predicts uncertainties greater than 104 (underconfident) for u1 and u2 and order 101 for ρ and T .
This is not captured by miscalibration area since the metric is insensitive to small numbers of outlier
uncertainties.

UQ mechanism Evaluation domain Mean Absolute Error Calibration
Deterministic In-domain 0.0649± 0.0340 n/a

High Mach 0.140± 0.0175 n/a
High Altitude 0.0996± 0.0135 n/a

Low Mach 0.130± 0.0174 n/a
Low Altitude 0.124± 0.0356 n/a

MVE In-domain 0.0939± .0378 0.42± 0.02
High Mach 0.173± 0.0436 0.45± 0.03

High Altitude 0.136± 0.0351 0.45± 0.00
Low Mach 0.143± 0.0219 0.48± 0.01

Low Altitude 0.139± 0.0367 0.44± 0.03
Evidential In-domain 0.135± 0.118 0.27± 0.06

High Mach 0.245± 0.200 0.32± 0.07
High Altitude 0.158± 0.0871 0.35± 0.10

Low Mach 0.141± 0.0253 0.35± 0.08
Low Altitude 0.168± 0.0832 0.34± 0.08

Ensembling In-domain 0.0378 ± 0.0105 0.09± 0.01
High Mach 0.119 ± 0.0200 0.24± 0.14

High Altitude 0.0846 ± 0.0185 0.22± 0.15
Low Mach 0.118 ± 0.0213 0.27± 0.12

Low Altitude 0.105 ± 0.0418 0.24± 0.18
Table 1: We evaluate the four model types on in-domain and OOD prediction tasks in terms of
accuracy and calibration. In contrast to Figure 2, which averages over all domains for each state
variable, here we report mean absolute errors and standard deviations calculated over all points in
each domain’s test set averaged over the four state variables. Consistent with Figure 2, we observe
that ensembling has the lowest mean absolute errors for all evaluated models (in bold text) and, on
average, the best calibration.

B Data generation

As training and evaluation data, we simulate high Mach number flow over a blunt nose cone, for
a set of state variables governed by the compressible NSE. The geometry for our study is based
on the second flight test from the RAM flight experiments performed in the 1960s: the RAM-C
II vehicle [16, 17]. We represent the RAM-C II vehicle by an axisymmetric spherical blunt nose
cone. The nose radius is 0.1524m and connects tangentially to the cone body, which has a half-cone
angle of 9 ◦. The full body length of the configuration is 1.3m. We use CFD++ version 20.1 [22] to
generate ground truth simulations.
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C Network hyperparameters

Table 2 gives the hyperparameters used to train the DeepONets in this study. We do not find that
evidential model performance varies significantly with evidential regularization hyperparameter λ for
values in the range [10−3, 1].

Hyperparameter Value
# of hidden units for the spatial encoder fx 32

# of layers for the spatial encoder fx 1
# of hidden units for the parameter encode fψ 32

# of layers for the parameter encoder fψ 1
# of hidden units for the decoder fd 256

# of layers for the decoder fd 3
weight decay for training the DeepONets 10−4

# epochs for training the DeepONets 97
evidential regularization strength λ 10−2

# of ensemble members 10
Table 2: Hyperparameters for training the DeepONet models (Eq. 1)

D Uncertainty quantification for operator-learning

We evaluate three schemes for UQ in this work. MVE (Appendix D.1) and evidential uncertainty
(Appendix D.2) are probabilistic methods that extend the network architecture and loss function,
while ensembling (Appendix D.3) is not. Other techniques not considered here include dropout [23]
and Gaussian mixture models (GMMs) [24].

D.1 Mean-variance estimation

In MVE, state variables are assumed to follow a conditionally normal distribution. The DeepONet
ŵℓ for the state variable ℓ has two output variables, the mean µℓ and variance σ2

ℓ :

(x, ψ)
ŵℓ7→ µℓ(x, ψ), σ

2
ℓ (x, ψ), (2)

µℓ(x, ψ) = [fd(fx(x)⊙ fψ(ψ))]1

σ2
ℓ (x, ψ) = SoftPlus[fd(fx(x)⊙ fψ(ψ))]2,

where the SoftPlus ensures nonnegativity of variance. MVE DeepONets are trained by minimizing
the Gaussian negative log-likelihood (NLL):

Loss((x, ψ), wℓ) = log σ2
ℓ (x, ψ) +

(µℓ(x, ψ)− wℓ)
2

σ2
ℓ (x, ψ)

, (3)

for a partial data point ((x, ψ), wℓ) ∈ RNx × RNψ × R.

D.2 Evidential uncertainty

In evidential uncertainty [11, 12, 13], a normal inverse-gamma (NIG) probabilistic model is imposed
on the data:

wℓ|x, ψ ∼ N (µℓ, σ
2
ℓ ) (4)

µℓ|x, ψ ∼ N (γℓ, σ
2
ℓ/vℓ)

σ2
ℓ |x, ψ ∼ Γ−1(αℓ, βℓ).

From this hierarchical model, we have the predicted state variable value as E[µℓ] = γℓ, the predicted
aleatoric uncertainty as E[σ2

ℓ ] = βℓ/(αℓ − 1), and the predicted epistemic uncertainty as Var[wℓ] =
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βℓ/(vℓ(αℓ − 1)). Thus, the predictive model ŵℓ for state variable ℓ is given by:

x, ψ
ŵℓ7→ γℓ, vℓ, αℓ, βℓ (5)

γℓ = [fd(fx(x)⊙ fψ(ψ))]1
vℓ = SoftPlus[fd(fx(x)⊙ fψ(ψ))]2
αℓ = SoftPlus[fd(fx(x)⊙ fψ(ψ))]3 + 1

βℓ = SoftPlus[fd(fx(x)⊙ fψ(ψ))]4,

where each fℓ is a neural network (NN).

For a partial datapoint ((x, ψ), wℓ) ∈ RNX × RNW × R, the evidential loss function [12] is:

Loss((x, ψ), w) =
∑
ℓ

LossNLL((x, ψ), wℓ) + λLossR((x, ψ), wℓ), (6)

where LossNLL is a NLL:

LossNLL((x, ψ), wℓ) =
1

2
log

π

vℓ
− αℓ log Ωℓ + log

Γ(αℓ)

Γ(αℓ + (1/2))

+

(
αℓ +

1

2

)
log

(
(wℓ − γ2ℓ vℓ +Ωℓ

)
(7)

Ωℓ = 2βℓ(1 + vℓ)

and LossR is a regularization term:

LossR((x, ψ), wℓ) = |wℓ − γℓ|(2vℓ + αℓ) (8)

D.3 Ensembling

In ensembling [19], a set ofB models ŵℓ,1, . . . , ŵℓ,B are independently trained from different network
weight initializations. Then the predicted means and standard deviations are µℓ(x, ψ) = mean

b
{ŵℓ,b}

and σℓ(x, ψ) = StdDev
b

{ŵℓ,b}.
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