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Abstract

Robust and cost-effective hydrogen storage is considered as an enabling technology
for carbon-free and renewable energy society. Hydrogen tank using polymer liner
has been in market and already used in fuel cell electric vehicles and airplanes.
Understanding of the fundamental mechanisms of hydrogen diffusion in polymer
could greatly speed up the deployment of hydrogen energy infrastructure at scale.
A computational framework that provides atomistic diffusion pathways at exper-
imentally relevant time scale is ideal for this purpose, however, it is yet to be
demonstrated. We have developed a novel deep reinforcement learning framework
combined with transition state theory to efficiently identify molecular diffusion
pathways in polymeric materials. Employing distributed replay buffer, an ensemble
of agents quickly learns the complex energy landscape of the system of interest.
Subsequently, the diffusion time of each pathway is estimated using transition state
theory. With the distributed training framework we have achieved significant im-
provement in learning in terms of both the training metrics as well as the molecular
diffusion time.

1 Introduction

Hydrogen energy plays an essential role in producing clean and sustainable power. To date, a variety
of storage methods have been developed. They are often categorized into physical storage and
chemical storage. The physical hydrogen storage methods mainly focus on storing hydrogen gas
as a condensed form including compressed hydrogen gas, liquid hydrogen storage, adsorption onto
materials, and others [Usman, 2022]. On the other hand, reaction-based storage can provide safer
transportation and reversible storage although the releasing hydrogen from chemical compounds
may require additional energy input, and lower release rates. Recently Type-IV hydrogen tank with
polymer liner has been attracting great attentions. High density polyethylene (HDPE) [Fujiwara et al.,
2021] and polyamide (PA) [Yersak et al., 2017] are widely used materials for the liner due to low cost,
chemical inertness, and low permeability. Here crystallinity of the linear material plays a key role.
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Figure 1: (a) and (b) crystalline and amorphous polyethylene systems. White and gray spheres repre-
sent hydrogen and carbon atoms. (c) molecular diffusion through crystalline (blue) and amorphous
(white) regions. Theoretical straight path (dotted line) and actual diffusion path (solid line).

For example, a high-pressure hydrogen permeation test has shown HDPE is 2.5 times less permeable
than the low density polyethylene (LDPE) that has low crystallinity and amorphous region[Fujiwara
et al., 2021].

Polyethylene (PE) consists of chains of CH2 repeat unit and has been extensively studied for many
scientific and engineering applications. Figure 1 (a) and (b) present crystalline PE and amorphous PE
systems, respectively. The tortuosity is defined as the ratio between theoretical straight path over the
actual diffusion trajectory length, which is an important factor to understand the permeability. Fig.1
(c) schematically presents H2 diffusion pathway in polymer linear, in which the blue blocks represent
highly crystalline regions with little permeability while the other area is filled by amorphous phases
thus more permeable.

Molecular Dynamics (MD) simulation is a powerful computational tool to study solubility and
permeability in polymers at the atomic level [Kotelyanskii and Theodorou, 2004]. However, the
accessible timescale using MD is severely limited due to the computational cost, thus impractical
to study diffusion phenomena that takes over the order of milliseconds. Reinforcement learning
(RL) is a promising approach to discover energy efficient diffusion pathway in the complex energy
landscape, akin to the maze-solving problem. RL has been used to study protein structure prediction
[Soltanikazemi et al., 2022, Yang et al., 2022] and drug design [Korshunova et al., 2022, Atance et al.,
2022]. Another advantage of RL is the ability to incorporate dynamically varying environments such
as the low-energy conformation changes in polymer chains [Padakandla, 2021].

2 Method

2.1 Reinforcement Learning

In Reinforcement learning (RL), an agent interacts with environment to learn optimal policy from
their actions and received rewards [Sutton and Barto, 2018].

Q-learning [Watkins, 1989] is a value-based learning to find optimal policy to maximize the cumula-
tive reward. The optimal action-value function (Eq. 1) is iteratively updated given action A in state
S at step t, and Rt+1 is the reward for the next action (Eq. 2). Here, α is the learning rate and γ is
discount factor that controls the extent of future rewards for an agent to take into account.

Q∗(s, a) = E[r + γmax
a′

Q(s′, a′)|s, a] (1)

Q∗(St, At)← Q∗(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2)

2.2 Deep Q-learning

Deep reinforcement learning (DRL) uses deep neural networks combined with RL to handle complex
decision-making tasks [Arulkumaran et al., 2017, Li, 2017]. DRL has been used in numerous appli-
cations such as autonomous control [Zhu et al., 2016], game playing [Mnih et al., 2015], and natural
language processing [Bahdanau et al., 2016]. Deep Q network (DQN) introduces Convolutional
Neural Networks (CNN) to approximate the optimal Q value, i.e. Q∗(s, a; θ) ≈ Q∗(s, a) where θ is
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Figure 2: (a) Agent modeled by harmonic potential, (b) state, and (c) Q-function using CNN and
fully-connected layers. The network takes the local atomic density distribution at a given state to
infer the Q-values.

network parameter, so that the complex state of Atari games can be incorporated[Mnih et al., 2013].
The parameter θ is trained by minimizing the loss function L(θ) as below,

L(θ) = E(s,a,r,s′)∼D[(r + γmax
a′

Q(s′, a′; θ−)−Q(s, a; θ))2], (3)

where D is the experience replay buffer that stores a tuple of agent’s experience, et = (st, at, rt, st+1)
at each time-step. During the training, the minibatch size of experiences are sampled from the replay
buffer. ϵ-greedy policy is applied to enhance the agent’s exploration while exploring knowledge
from previous training. To reduce overefitting and the learning more stable, the target network is
periodically cloned from behavioral network.

Many algorithmic extensions to the original DQN have been proposed to date including Double
Q-learning [van Hasselt et al., 2015], prioritized replay buffer [Schaul et al., 2015, Fedus et al.,
2020], Dueling networks [Wang et al., 2015], Multi-step learning [Sutton, 1988], Distributional
RL[Bellemare et al., 2017], Noisy networks[Fortunato et al., 2017]. These extensions are collectively
called Rainbow DQN [Hessel et al., 2017] and also utilized in our framework.

Next, we describe each element of our framework.

Environment: Environment is modeled by reactive MD (RMD) simulation using a reactive inter-
atomic potential, ReaxFF [Senftle et al., 2016]. ReaxFF employs the bond-order concept and the
dynamical charge scheme called QEq and accurately describes the interatomic interactions for hydro-
carbon and polymeric systems [Duin et al., 2001, Vashisth et al., 2018]. All RMD simulations were
carried out using a scalable MD software RXMD [Nomura et al., 2020]. Pytorch 1.12.0+cu102[Paszke
et al., 2019] and Ray 2.2.0[Moritz et al., 2018] are used for model training and the interprocess
communication, repsectively.

Agent: An agent is modeled by a harmonic potential 1/2ks(r⃗ − r⃗0)
2 where ks is the spring constant,

r⃗ is the coordinates of an atom bound to the agent, and r⃗0 is the agent’s position. See Fig.2 (a). The
agent is initially placed near the y − z plane at x = 0. When the agent makes an action, one of
the five displacement vectors a = {(1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)} is selected to
update the position of agent. Such a discrete action may suffer from the action oscillation problem
[Chen et al., 2021], thus we mask the displacement vector (−1, 0, 0) in this study. After each action,
the system is briefly relaxed to sample the potential energy at the new state.

State: The state is a three-dimensional grid that represents the local atomic density around the agent’s
location. See Fig.2 (b). Within a cutoff distance of 5Å, we use the Gaussian Kernel to compute the
density contribution from each neighbor atom.

Reward: The reward consists of five functions: Rposition, Renergy , Rdensity , Rdistance, and Rtime.
Rposition is a monotonically increasing function based on the x-coordinate of the agent. Renergy

encourages to find a lower energy state than the past history, Rdensity keeps the agent from colliding
with neighbor atoms. Rdistance keeps the agent and a hydrogen atom together. We also apply a time
penalty to avoid agent staying at the same location for long time. In addition, the agent receives an
end-of-episode reward when it reaches the goal, i.e. within 2Å from the right end of the simulation
box.
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Figure 3: Agent’s performance using crystalline PE system. (a) Agent’s x-coordinate at the end of
episode and (b) total reward as a function of the number of RL agents N = 1, 4, and 16 respectively.

Q-function: Three-dimensional CNN is used to model the Q-function that consists of three convolu-
tional (conv) layers with ReLu activation function [Agarap, 2018], followed by two fully-connected
(FC) layers (Fig. 2) (c). For each conv layer, kernel size and strides are (8, 2), (4, 1) and (3, 1)
respectively. We use 32, 64, and 128 channels for each conv layer. 512 and 80 nodes are used for the
first and second FC layers.

3 Experiment

We have tested our framework on crystal and amorphous PE systems. To generate the crystalline
system, we replicate the unit cell of PE ([Bunn, 1939]) 4 × 5 × 11 times in each direction. The
periodic boundary condition is applied on all three directions. The obtained system dimensions are
29.6× 24.65× 27.87 (Å3) that contains 2, 640 atoms in total with the density of roughly 1g/cc. For
the amorphous system, we first generate single PE chain consists of 50 atoms. Packmol package
[Martínez et al., 2009] is used to create a supercell with the dimensions of (32 Å)3. Forty PE chains
are placed in the system with a tolerance of 2.0Å separation between the chains. We thermalize the
system at room temperature while gently compress the system with a constant compression ratio.
The final system size (24.86 Å)3 for the amorphous PE system. Total number of atoms is 2, 000 at
the density around 0.97 g/cc.

Figure 3 (a) and (b) present the agent’s final x-coordinate and the total reward as a function of the
number of agents N . Overall, the agent has found a diffusion path to reach the goal at x = 27 Å. See
Fig 3 (a). The final reward quickly increases with N = 16 and reaches to a steady value around 120
after 10, 000 steps. With N = 4, the final reward has become a similar value as the N = 16 case. On
the other hand, it saturates around 80 with N = 1 indicating the agent being trapped by a sub-optimal
diffusion path. See Fig 3 (b).

After obtaining the energy barriers along diffusion pathway, we estimate the diffusion time Tm based

on transition state theory as Tm =
∑

i
ℏ

kBT ∗ exp(
E

(i)
A

kBT ), where E
(i)
A is the i-th energy barrier along

an energy profile, which is obtained by the difference between an energy minimum and subsequent
energy maximum. ℏ is the reduced Plank constant, kB is Boltzmann constant, T is the temperature
and set to be at 300 K. The speed of molecular diffusion is obtained from the size of simulation
system (29.6 Å for the crystalline and 32 Å for the amorphous systems) divided by the total diffusion
time.

In the crystal system using N = 16 agents, we obtained the diffusion speed of 0.589 nm/day. While
the agent successfully finished episode with the N = 1, it failed to find an energy efficient pathway
resulting in an infinite Tm. Table 1 summarizes the best Tm for both crystalline and amorphous
systems. First of all, Tm in the amorphous system is greater than the ones in the crystal system,
which suggests that the agent has correctly learned the energy landscape difference between the two
systems. Overall trend in Tm agrees with the agent’s performance, however, it is also very sensitive
to the energy barriers EA, which can be influenced by a slight fluctuation in the diffusion pathways.
Currently we are developing piecewise parallel Nudged Elastic Band[Henkelman et al., 2000] to
refine the obtained energy barriers with robust diffusion time estimate.
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Table 1: H2 diffusion speed (nm/day) in crystal and amorphous PE systems.

Number of Agents N 1 4 16
Crystal N/A 2.25× 10−5 0.589

Amorphous 41.35 521.052 1,846.42

4 Conclusions

We have developed a DRL framework to study molecular diffusion through polymeric materials.
Using the efficient model training based on the distributed replay buffer, an ensemble of RL agents
quickly learns the complex energy landscape of the system to uncover energy efficient pathways.
Subsequently, the diffusion time of each pathway is estimated using transition state theory. The
distributed training with 16 agents shows a significant improvement in the training metrics as well as
the diffusion time.

Broader Impact

The RL framework presented in this study is system-agnostic and easily applicable to many molecular
diffusion processes. It does not require domain expert knowledge nor prescribed reaction coordinates
to learn and uncover energy-efficient pathways. With the capability to access experimentally relevant
timescale using transition state theory without sacrificing atomistic level insights, our framework has
a potential to find many applications in engineering and scientific problems.
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