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Abstract

Physics-informed neural networks (PINNs) have gained prominence for their ca-
pability to tackle supervised learning tasks that conform to physical laws, notably
nonlinear partial differential equations (PDEs). This paper presents "PINNs-TF2",
a Python package built on the TensorFlow V2 framework. It not only accelerates
PINNs implementation but also simplifies user interactions by abstracting complex
PDE challenges. We underscore the pivotal role of compilers in PINNs, high-
lighting their ability to boost performance by up to 119x. Across eight diverse
examples, our package, integrated with XLA compilers, demonstrated its flexibility
and achieved an average speed-up of 18.12 times over TensorFlow V1. Moreover,
a real-world case study is implemented to underscore the compilers’ potential to
handle many trainable parameters and large batch sizes. For community engage-
ment and future enhancements, our package’s source code is openly available at:
https://github.com/rezaakb/pinns-tf2.

1 Introduction

Physics-informed neural networks (PINNs) are gaining traction as a potent tool for supervised
learning, ensuring solutions align with physics laws, notably nonlinear partial differential equations
(PDEs) [17]. Their versatility covers an array of applications [3, 9, 6, 20, 1]. This paper unveils
“PINNs-TF2”, a novel Python package to bolster PINNs’ efficiency and to simplify the integration of
machine learning and physical sciences by abstracting complex PDE problems.

We selected TensorFlow V2 (TF2) due to its prominence in the deep learning realm and its provision of
static computational graphs. Given that PINNs frequently necessitate multiple gradient computations
of network outputs in relation to inputs for PDE definition [12], the advantage of static graphs
becomes evident. They reduce the overhead that can be significantly time-consuming in dynamic
computational graphs, as seen in frameworks like PyTorch [13, 12].

Building upon previous works [10, 4, 8], the “PINNs-TF2" package utilizes static computational
graphs via Accelerated Linear Algebra (XLA) and Just-In-Time (JIT) compilers [22], a technique also
adopted by others, to significantly enhance the speed of Physics-Informed Neural Networks (PINNs).
This approach yields considerable improvements in training times over TensorFlow V1 [17]. Through
our package, we have showcased its versatility by implementing nine distinct examples, achieving
an impressive peak speed-up of 119.96x compared to previous implementations in TensorFlow V1.
Also, with the incorporation of the Hydra framework [24], “PINNs-TF2” refines user experience by
distilling PDE problems into assorted samplers and boundary conditions.

Our results suggest that the exclusive use of the JIT compiler strikes an ideal equilibrium between
speed-up and errors by obviating redundant graph constructions during gradient operations within
TensorFlow’s computational graph. Moreover, we elucidate the influence of batch sizes and the
quantity of trainable parameters on the performance of implemented examples with our package. We
hope our package serves as an indispensable tool for researchers delving into the PINNs domain.
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Figure 1: Overview of the simplified PINNs-TF2 framework: (a) Users provide a config file and
define reading data and PDE functions. The package then processes them to initialize a neural
network, formulate a mesh for the data, and establish conditions. (b) Elucidates the components of
the conditions, including data sampled from the mesh, shared neural networks, and designated loss
functions. (c) During training, cumulative loss from each condition directs backpropagation. This
process is compiled with the XLA compiler.

2 PINNs-TF2 Package

In this section, we provide a brief summary of the problem setup and outline how our package works.

2.1 Problem Setup

We adopt the problem definition from [17]. The study focuses on parametric and nonlinear PDEs
with the structure:

ut +N [u;λ], x ∈ Ω, t ∈ [0, T ]

Where u(t, x) is the unobservable solution, N [.;λ] is a nonlinear operator influenced by the parameter
λ, and Ω is a subset of RD. Two core issues are addressed: Data-driven solution (forward problem)
[16, 15] focuses on revealing the hidden state u(t, x) for a given λ. Data-driven discovery (inverse
problem) [16, 14, 21] seeks the optimal λ values based on observed data.

There are two algorithm approaches based on data types: continuous time and discrete time models.
The former employs new spatio-temporal approximators, and the latter uses specific implicit Runge-
Kutta methods. For further information, please refer to [17].

2.2 Implementation

PINNs-TF2 Workflow. Our package streamlines the process of addressing both forward and
inverse challenges in discrete and continuous contexts linked to nonlinear partial differential equa-
tions. Initially, it processes configuration files using Hydra [24] to retrieve specifications such as
spatial/temporal ranges, the number of samples, boundary conditions, and neural network attributes
like layer count. Subsequently, it loads the user-specified PDE function and a function for loading
data. With this data at hand, the relevant conditions, mesh based on data, and a neural network are
initialized. Each condition can have its unique loss function (e.g. periodic boundary conditions
calculate loss from the difference between predicted and actual values at the periodic boundary). All
conditions share a common neural network. Both the training and evaluation phases are compiled
using the XLA compiler. An illustrative overview of this workflow can be seen in Figure 1.

Compile with tf.function. When tf.function is set to jit_compile=False, TensorFlow
translates Python functions into a static computational graph, optimized through pattern-matching
rewrites. This approach, however, doesn’t generate new code and relies on a limited set of predefined
kernels, which can sometimes restrict its flexibility and optimization potential. In our work, this
mode for compiling training and evaluation steps is referred to as “TF2”.

On the other hand, when tf.function employs jit_compile=True, the XLA compiler [22],
leveraging Just-In-Time (JIT) compilation, converts TensorFlow’s computation graphs into highly
optimized machine code right before execution. JIT offers several advantages: by fusing multiple
operations, operating on the High Level Optimiser Internal Representation (HLO IR), and tailoring the
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Table 1: Average speed-ups for the eight examples from Section 3.1, benchmarked against
TensorFlow V1 using different acceleration methods. Among the methods, the JIT compiler alone
stands out as the most effective accelerator.

TF2 JIT AMP AMP+JIT
Avg. speed-up w.r.t. TF1 1.81 18.12 1.58 10.76

code for the nuances of the target hardware, it significantly enhances both speed and memory efficiency
[7, 22]. JIT-optimized processes reduce overhead in PINNs’ repetitive gradient computations, with
XLA’s static graph enhancing computational efficiency. In our architecture, we maintain consistent
input shapes to avoid XLA compiler overhead from shape changes [23]. For the purposes of our
experiments, this mode is termed “JIT”.

Mixed Precision. We also employ TensorFlow’s Mixed Precision using float16, blending FP16 and
FP32 to accelerate training and conserve memory on GPUs [11]. We labeled this mode "AMP".

3 Experiments

In this section, we assess the performance of TF2, JIT, and AMP across 8 diverse examples, focusing
on error maintenance and speed-up. We also demonstrate their efficacy with a large-scale dataset by
implementing a real-world example.

Hardware Setup. All tests were carried out on a single NVIDIA Quadro RTX 8000 GPU to
maintain uniformity and repeatability.

Speed-up Metric. We measured the median time for a single iteration in each case and compared it
to the original TensorFlow V1 (TF1) implementations1. The speed-up is measured by dividing the
duration from the TF1 version by the duration of each specific scenario in TensorFlow V2.

Mean Relative Error Metric. We calculate average relative errors for each example. Error nature
may vary by problem; see Supplementary Materials Section C for details.

3.1 Evaluation of Various Acceleration Techniques

We measure the efficacy of acceleration techniques across various examples, including the Continuous
Forward Schrodinger, Discrete Forward Allen–Cahn (AC), Continuous Inverse Navier-Stokes (NS),
and Discrete Inverse Korteweg-de Vries (KdV) Equations. We also explore the Burgers’ Equation in
all modes. For in-depth insights about examples, see the Supplementary Materials Section D and [17].
Our benchmarks compare JIT compiler and AMP combinations against a non-accelerated baseline.

In Table 1, we present the average speed-ups of our examples compared to TensorFlow V1. By
solely utilizing the JIT compiler, we achieved average speed-up of 18.12 without any compromise
in accuracy. This advantage is visually represented in Figure 2, which plots both the speed-up
and mean relative errors. The KdV example registered the highest speed-up, peaking at 31.75.
Conversely, our performance did not benefit from using AMP, a limitation possibly due to hardware
constraints or implementation overheads. Notably, TF2 outperformed TF1 with an average speed-up
of 1.81. Moreover, our data points towards a decline in speed-up when AMP and JIT are combined, a
phenomenon potentially resulting from the mixing precision and JIT overheads.

3.2 Assessing the Impact of Batch Size and Number Trainable Parameters

We explore the influence of batch sizes and the count of trainable parameters on the efficiency of
models harnessing our accelerators. This section focuses on the computational intricacies of modeling
a three-dimensional physiological blood flow inside a genuine intracranial aneurysm (ICA) using
the 3D Navier-Stokes equation. Given the dataset’s vastness, encompassing 29 million data points
spanning spatial, and temporal domains, and five solutions, we reshuffle it each epoch, sampling
according to the batch size. For further insights, consult [18, 19].

1For instances in section 3.1, we reference the code from https://github.com/maziarraissi/PINNs,
and for the instance in section 3.2, we consult the code from https://github.com/maziarraissi/HFM.
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Figure 2: Each subplot denotes a unique problem, with its specific iteration count indicated at the top.
The logarithmic x-axis shows speed-up relative to TF1, and the y-axis the mean error, highlighting
JIT compiler boosts speed without added error.
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Figure 3: The left plot depicts the escalating efficiency benefits from the JIT compiler with increasing
batch sizes. In contrast, the right plot reveals that adjusting the number of trainable parameters by
altering the neural network’s layer count enhances the JIT’s effectiveness, while the speed-up in other
configurations diminishes.

We assess speed-up metrics across various settings. Initially, with all other attributes fixed, we solely
vary the batch size for a model with 596k trainable parameters. The left plot of Figure 3 reveals that
the JIT’s efficiency surges with larger batch sizes. At a batch size of 20480, the JIT’s speed-up peaks
at 119.96, significantly reducing training durations. This is likely due to the JIT compiler’s capacity
to optimize memory usage of computational graphs, such as through fusion, allowing more room for
increased batch sizes. In our subsequent experiment, with a fixed batch size of 8192, we adjusted
the number of trainable parameters by modifying the neural network’s layer depth. While other
configurations witnessed a performance decline, JIT’s efficacy rose, as showcased in the right plot of
Figure 3. The highest speed-up relative to TF1 reaches 70.99 with over 821k trainable parameters
and a batch size of 8192. This section underscores the JIT compiler’s advantage, especially for large
batch sizes and a high count of trainable parameters.

4 Conclusions

In this package, we underscore the significance of compilers in TensorFlow, demonstrating their
capability to boost performance over standard TensorFlow implementations. Through 9 varied
examples, we illustrate the versatility of “PINNs-TF2” across diverse challenges. Especially for large
batch sizes, the use of XLA and JIT compilers has yielded a remarkable 119x speed-up compared to
TensorFlow V1. Interestingly, in our tests, mixed precision reduced the speed-up, suggesting that
newer GPUs (i.g. NVIDIA A100) and the adoption of TensorFloat-32 might address this issue [2, 4].
We believe our package will be valuable to research across various domains.
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Figure 4: An example of a basic config file and custom functions for the continuous forward Burgers’
equation. Users are required to set up a config file and function for the PINNs-TF2 package to process
the data and determine the PDE.

A Appendix

This supplementary document expands on the primary paper in the following ways:

1. Additional information about the PINNs-TF2 Workflow (supplements Section 2.2).

2. Presents deeper insights into relative errors for evaluation and training for every problem
(supplements Section 3).

3. Provides detailed conversations about the examples implemented using our package, includ-
ing the associated errors and speed-ups (complements Section 3).

B PINNs-Torch Workflow

Users should establish a config file interpreted by Hydra, which in turn triggers the relevant classes.
They must also delineate functions for fetching data and defining the PDE. An illustration of this
setup, using a file and custom functions, can be seen in Figure 4. This package leverages these user
definitions to solve the PDE.

C Errors

Error Notations. We use Err as a unified symbol representing either mean squared error (MSE)
or sum squared error (SSE). Specifically, Err0 is the error in initial conditions, Errb in boundary
conditions, Errc at collection points, Errs in sampled solutions, and Erri at time step i.

Relative Errors. We measure errors between predicted and exact solutions using the ℓ2 norm:

∥upred − utarget∥2
∥utarget∥2

(1)

For variables in the inverse problem, we use:

|λpred − λtarget|
|λtarget|

(2)

D Examples

In this section, we summarize examples from our main paper. For detailed insights on the first 8
examples, refer to [17] and for the 3D Navier-Stokes equation in section 3.2, see [18, 19].
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Table 2: The problem setup for continuous forward Schrodinger equation.
Continuous Forward Schrodinger Equation

PDE equations
fu = ut + 0.5vxx + v(u2 + v2),

fv = vt + 0.5uxx + u(u2 + v2)

Initial condition
u(0, x) = 2sech(x),
v(0, x) = 2sech(x)

Periodic boundary conditions

u(t,−5) = u(t, 5),

v(t,−5) = v(t, 5),

ux(t,−5) = ux(t, 5),

vx(t,−5) = vx(t, 5)

The output of net [u(t, x), v(t, x)]

Layers of net [2] + 4× [100] + [2]

Sample count from collection points 20000

Sample count from the initial condition 50

Sample count from boundary conditions 50

Loss function MSE0 + MSEb + MSEc

Table 3: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for continuous forward Schrodinger equation after 60,000 iterations.

Method Relative Errors Mean Relative Error Speed-up
h(t, x) v(t, x) u(t, x)

Original Code (TF1) 0.017 0.104 0.064 0.061 1
TF2 0.024 0.106 0.068 0.066 2.62
AMP 0.022 0.103 0.062 0.063 2.11
JIT 0.024 0.110 0.069 0.068 22.90
JIT + AMP 0.023 0.109 0.065 0.066 3.38

Continuous Forward Schrodinger Equation. For the nonlinear Schrodinger equation given by:

iht + 0.5hxx + |h|2h = 0,

h(0, x) = 2sech(x),
h(t,−5) = h(t, 5),

hx(t,−5) = hx(t, 5),

with x ∈ [−5, 5], t ∈ [0, π/2], and h(t, x) as the complex solution, we partition h(t, x) into
its real part u and imaginary part v. Thus, our complex-valued neural network representation is
[u(t, x), v(t, x)]. The setup is detailed in Table 2.

Prediction discrepancies are gauged against the test data using the relative ℓ2-norm. Table 3 showcases
errors for h(t, x), u(t, x), and v(t, x), plus the average error as mentioned in the primary study.

Continuous Inverse Navier-Stokes Equation. Given the 2D nonlinear Navier-Stokes equation:

ut + λ1(uux + vuy) = −px + λ2(uxx + uyy),

vt + λ1(uvx + vvy) = −py + λ2(vxx + vyy),

7



Table 4: The problem setup for the continuous inverse Navier-Stokes equation.
Continuous Inverse Navier-Stokes Equation

PDE equations
f = ut + λ1(uux + vuy) + px − λ2(uxx + uyy),

g = vt + λ1(uvx + vvy) + py − λ2(vxx + vyy)

Assumptions
u = ψy,

v = −ψx

The output of net [ψ(t, x, y), p(t, x, y)]

Layers of net [3] + 8× [20] + [2]

Sample count from collection points 5000∗

Sample count from solutions 5000∗

Loss function SSEs + SSEc

*Same points used for collocation and solutions.

Table 5: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for continuous inverse Navier-Stokes equation after 250,000 iterations.

Method Relative Errors Mean Relative Error Speed-up
v(t, x) u(t, x) λ1 λ2

Original Code (TF1) 0.018 0.009 0.002 0.054 0.021 1
TF2 0.021 0.023 0.001 0.051 0.024 2.50
AMP 0.028 0.022 0.001 0.050 0.025 2.32
JIT 0.019 0.021 0.001 0.045 0.022 28.77
JIT + AMP 0.021 0.026 0.001 0.038 0.022 12.66

where u(t, x, y) and v(t, x, y) are the x and y components of the velocity field, and p(t, x, y) is the
pressure, we seek the unknowns λ = (λ1, λ2). When required, we integrate the constraints:

0 = ux + vy,

u = ψy,

v = −ψx, (3)

We use a dual-output neural network to approximate [ψ(t, x, y), p(t, x, y)], leading to a physics-
informed neural network [f(t, x, y), g(t, x, y)]. The setup is detailed in Table 4.

Prediction discrepancies are assessed against a test dataset. Table 5 displays the relative ℓ2-norm
errors for both velocity components and the relative errors for the λ parameters, alongside the average
error referenced in the main paper.

Discrete Forward Allen-Cahn Equation. Given the non-linear AC equation:

ut − 0.0001uxx + 5u3 − 5u = 0,

u(0, x) = x2 cos(πx),

u(t,−1) = u(t, 1),

ux(t,−1) = ux(t, 1),

with x ∈ [−1, 1] and t ∈ [0, 1], we adopt Runge–Kutta methods with q stages as described in [17, 5].
The neural network output is:

[un+c1(x), . . . , un+cq (x), un+1(x)]

where un+cj is data at time tn + cj∆t. The problem setup can be found in Table 6. We extract data
from the exact solution at t0 = 0.1 aiming to predict the solution at t1 = 0.9 using a single time-step
of ∆t = 0.8. Table 8 shows ℓ2-norm errors for u(x) at t1.
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Table 6: The problem setup for discrete forward Allen-Cahn equation.
Discrete Forward AC Equation

PDE equations fn+cj = 5.0un+cj − 5.0(un+cj )3 + 0.0001un+cj
xx

Periodic boundary conditions
u(t,−1) = u(t, 1),

ux(t,−1) = ux(t, 1)

The output of net [un+c1(x), . . . , un+cq (x), un+1(x)]

Layers of net [1] + 4× [200] + [101]

The number of stages (q) 100

Sample count from collection points at t0 200∗

Sample count from solutions at t0 200∗

t0 → t1 0.1 → 0.9

Loss function SSE0
s + SSE0

c + SSE1
b

*Same points used for collocation and solutions.

Table 7: The problem setup for discrete inverse Korteweg–de Vries equation.
Discrete Inverse KdV Equation

PDE equations fn+cj = −λ1un+cjun+cj
x − λ2u

n+cj
xxx

The output of net [un+c1(x), . . . , un+cq−1(x), un+cq (x)]

Layers of net [1] + 3× [50] + [50]

The number of stages (q) 50

Sample count from solutions at t0 199∗

Sample count from collection points at t0 199∗

Sample count from solutions at t1 201∗

Sample count from collection points at t1 201∗

t0 → t1 0.2 → 0.8

Loss function SSE0
s + SSE0

c + SSE1
s + SSE1

c

*Same points used for collocation and solutions.

Discrete Inverse Korteweg–de Vries Equation. Given the non-linear KdV equation:
ut + λ1uux + λ2uxxx = 0,

we use Runge–Kutta methods with q stages to identify parameters λ = (λ1, λ2). The network
outputs:

[un+c1(x), . . . , un+cq−1(x), un+cq (x)]

with un+cj = u(tn+cj∆t, x) as data at time tn+cj∆t. Data is sampled at tn = 0.2 and tn+1 = 0.8.
See Table7 for problem details and Table 9 for relative errors of λ1 and λ2.

Continuous Forward Burgers’ Equation. Given the Burgers’ equation:
ut + uux − (0.01/π)uxx = 0,

with domain x ∈ [−1, 1] and t ∈ [0, 1], and the initial and boundary conditions:
u(0, x) = − sin(πx),

u(t,−1) = 0,

u(t, 1) = 0,

we aim to determine the solution u(t, x). Refer to Table 10 for problem details and Table 11 for the
relative error of u(t, x).
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Table 8: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for discrete forward Allen-Cahn equation after 100,000 iterations.

Method Relative Error Mean Relative Error Speed-up
u(t, x)

Original Code (TF1) 0.047 0.047 1
TF2 0.040 0.040 1.68
AMP 0.029 0.029 1.20
JIT 0.038 0.038 13.31
JIT + AMP 0.071 0.071 10.30

Table 9: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for discrete inverse Korteweg–de Vries equation after 50,000 iterations.

Method Relative Errors Mean Relative Error Speed-up
λ1 λ2

Original Code (TF1) 0.003 0.0005 0.002 1
TF2 0.002 0.007 0.004 2.72
AMP 0.001 0.007 0.004 2.37
JIT 0.002 0.007 0.004 31.75
JIT + AMP 0.001 0.007 0.004 26.09

Table 10: The problem setup for continuous forward Burgers’ equation.
Continuous Forward Burgers’ Equation
PDE equations f = ut + uux − (0.01/π)uxx

Initial conditions u(0, x) = − sin(πx)

Dirichlet boundary conditions u(t,−1) = u(t, 1) = 0

The output of net [u(t, x)]

Layers of net [2] + 8× [20] + [1]

Sample count from collection points 10000

Sample count from the initial condition 50

Sample count from boundary conditions 50

Loss function MSE0 + MSEb + MSEc

Table 11: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for continuous forward Burgers’ equation after 30,000 iterations.

Method Relative Error Mean Relative Error Speed-up
u(t, x)

Original Code (TF1) 0.045 0.045 1
TF2 0.010 0.010 1.12
AMP 0.022 0.022 0.87
JIT 0.013 0.013 9.60
JIT + AMP 0.022 0.022 4.73
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Table 12: The problem setup for continuous inverse Burgers’ equation.
Continuous Inverse Burgers’ Equation
PDE equations f = ut + λ1uux − λ2uxx

The output of net [u(t, x)]

Layers of net [2] + 8× [20] + [1]

Sample count from collection points 2000∗

Sample count from solutions 2000∗

Loss function MSEs + MSEc

*Same points used for collocation and solutions.

Table 13: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for continuous inverse Burgers’ equation after 40,000 iterations.

Method Relative Errors Mean Relative Error Speed-up
λ1 λ2

Original Code (TF1) 0.003 0.196 0.100 1
TF2 0.009 0.158 0.084 1.27
AMP 0.006 0.155 0.081 1.17
JIT 0.003 0.141 0.072 11.49
JIT + AMP 0.040 0.167 0.104 8.44

Continuous Inverse Burgers’ Equation. Considering the equation:

ut + λ1uux − λ2uxx = 0,

we aim to both predict the solution u(t, x) and determine the unknown parameters λ = (λ1, λ2). For
the problem configuration, see Table 12. Relative errors for u(t, x), λ1, and λ2 are in Table 13.

Discrete Forward Burgers’ Equation. For this problem, we use data from t1 = 0.1 to predict
solutions at t2 = 0.9 utilizing Runge-Kutta methods with q stages. The equation is:

fn+cj = un+cjun+cj
x − (0.01/π)un+cj

xx

Here, un indicates information at time tn. For more details, consult Table 15 for the setup and Table
14 for relative errors of u(t, x).

Discrete Inverse Burgers’ Equation. Similar to its forward counterpart, we utilize Runge-Kutta
methods with q stages. The equation here is given by:

fn+cj = λ1u
n+cjun+cj

x − λ2u
n+cj
xx

The goal is to determine λ1 and λ2. Data points are taken from t = 0.1 to t = 0.9. For more details,
see Table 18 for the problem setup and Table 17 for relative errors.

Table 14: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for discrete forward Burgers’ equation after 10,000 iterations.

Method Relative Error Mean Relative Error Speed-up
u(t, x)

Original Code (TF1) 0.008 0.008 1
TF2 0.008 0.008 1.45
AMP 0.004 0.004 1.23
JIT 0.003 0.003 11.39
JIT + AMP 0.003 0.003 8.62
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Table 15: The problem setup for discrete forward Burgers’ equation.
Discrete Forward Burgers’ Equation

PDE equations fn+cj = un+cjun+cj
x − (0.01/π)un+cj

xx

Dirichlet boundary conditions u(t,−1) = u(t, 1) = 0

The output of net [un+c1(x), . . . , un+cq (x), un+1(x)]

Layers of net [1] + 3× [50] + [501]

The number of stages (q) 500

Sample count from collection points at t0 250∗

Sample count from solutions at t0 250∗

t0 → t1 0.1 → 0.9

Loss function SSE0
s + SSE0

c + SSE1
b

*Same points used for collocation and solutions.

Table 16: The problem setup for continuous forward 3D Navier Stokes equation.
Continuous Forward 3D NS

PDE equations

e1 =ct + (ucx + vcy + wcz)

− (1.0/Pec)(cxx+ cyy + czz)

e2 =ut + (uux + vuy + wuz) + px
− (1.0/Re)(uxx+ uyy + uzz)

e3 =vt + (uvx + vvy + wvz) + py
− (1.0/Re)(vxx+ vyy + vzz)

e4 =wt + (uwx + vwy + wwz) + pz
− (1.0/Re)(wxx+ wyy + wzz)

e5 =ux + vy + wz

The output of net
[c(t, x, y, z), u(t, x, y, z), v(t, x, y, z),

w(t, x, y, z), p(t, x, y, z)]

Layers of net [4] + 10× [250] + [5]

Batch size of collection points 10000

Batch size of solutions in c(t, x, y, z) 10000

Loss function MSEs + MSEc

Continuous Forward 3D Navier-Stokes Equation. In this example, the fluid’s dynamics are
represented by the non-dimensional Navier-Stokes and continuity equations:

ct + ucx + vcy + wcz = Pec−1(cxx + cyy + czz),

ut + uux + vuy + wuz = −px + Re−1(uxx + uyy + uzz),

vt + uvx + vvy + wvz = −py + Re−1(vxx + vyy + vzz),

wt + uwx + vwy + wwz = −pz + Re−1(wxx + wyy + wzz),

ux + vy + wz = 0.

Velocity components are given by u = (u, v, w), and p is the pressure. For the problem setup, refer
to Table 16. Adjustments were made in batch sizes, and hidden layers for parameter training.
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Table 17: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for discrete inverse Burgers’ equation after 50,000 iterations.

Method Error Mean Error Speed-up
λ1 λ2

Original Code (TF1) 0.003 0.239 0.121 1
TF2 0.004 0.280 0.142 1.55
AMP 0.004 0.278 0.141 1.35
JIT 0.004 0.280 0.142 15.77
JIT + AMP 0.004 0.278 0.141 11.87

Table 18: The problem setup for discrete inverse Burgers’ equation.
Discrete Inverse Burgers’ Equation

PDE equations fn+cj = λ1u
n+cjun+cj

x − λ2u
n+cj
xx

The output of net [un+c1(x), . . . , un+cq−1(x), un+cq (x)]

Layers of net [1] + 4× [50] + [81]

The number of stages (q) 81

Sample count from collection points at t0 199∗

Sample count from solutions at t0 199∗

Sample count from collection points at t1 201∗

Sample count from solutions at t1 201∗

t0 → t1 0.1 → 0.9

Loss function SSE0
s + SSE0

c + SSE1
s + SSE1

c

*Same points used for collocation and solutions at each time step.
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