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Abstract

As the deployment of computer vision technology becomes increasingly common
in science, the need for explanations of the system and its output has become
a focus of great concern. Driven by the pressing need for interpretable models
in science, we propose the use of Explainable Boosting Machines (EBMs) for
scientific image data. Inspired by an important application underpinning the
development of quantum technologies, we apply EBMs to cold-atom soliton image
data tabularized using Gabor Wavelet Transform-based techniques that preserve
the spatial structure of the data. In doing so, we demonstrate the use of EBMs for
image data for the first time and show that our approach provides explanations that
are consistent with human intuition about the data.

1 Introduction

Machine learning (ML)-based image analysis has found many applications throughout science,
including analysis of data in particle physics [1, 2], dark matter searches [3, 4] and quantum dots
experiments [5, 6]; predicting properties of materials [7, 8]; studying molecular representations and
properties [9, 10]; and others in fields such as medicine and biology [11, 12]. Given the widespread
application of ML, there is a growing need for explainable ML to support applications that currently
require human users to understand why a model provides the output it does.

While the glass-box models, such as decision trees, linear regression, or classification rules, are
relatively easy for humans to interpret, they tend to underperform when compared to the state-of-
the-art black-box models such as deep neural networks (DNN). Moreover, glass-box models are not
always easily adaptable to image data. At the same time, many experiments in the sciences produce
data in the form of images, the nuanced analysis of which is limited by our preconceptions of the
patterns and anomalies that could be present in the data. While some of the analysis tasks, such as
data pre-processing, classification, and feature detection, have been automated using black-box ML
techniques, the complex relationship between inputs and outputs in such models makes them difficult
to interpret. This limits their application in areas where human-user understanding of the model output
or the correlations between features implicitly utilized by the model are strictly necessary. Prior work
[13] has demonstrated that some saliency methods, such as SmoothGrad [14] or Gradient-weighted
Class Activation Mapping (Grad-CAM) [15], are independent of the model being explained as well as
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the data-generating process. This fundamental shortcoming calls into question whether these methods
provide explanatory information or if they are more akin to edge detectors.

Figure 1: (a) Sample image from the reduced soliton dataset.
(b) The optimized Gabor filter for the image shown in (a).

In this work, we tackle the problem
of ML explainability for image data
using Explainable Boosting Machines
(EBMs). EBMs are models designed
to be highly intelligible and explain-
able, while also achieving compara-
ble accuracy against state-of-the-art
ML methods [16]. However, to date,
EBMs have only been used with tabu-
lar data and have not been adapted to any other data type. An example of an image dataset where
understanding the relative importance of and correlations between visual features characterizing the
physical systems allows to differentiate between different states of the system is the Dark solitons
in Bose-Einstein condensates (BECs) dataset v.2.0 [17]. Solitonic excitations – solitary waves that
retain their size and shape and often propagate at a constant speed – are present in systems at scales
ranging from microscopic [18, 19], to terrestrial [20–26] and even astronomical [27]. In images of
BECs, solitons manifest as reductions in the atomic density (a “dip”) surrounded by two “shoulders”
of higher density. While ideal solitons are vertically symmetric, many candidate excitations created
experimentally break this symmetry, resulting in a number of physically-motivated subcategories,
such as solitonic vortices or partial excitations [28].

We focus on the subset of the soliton dataset consisting of data containing exactly one excitation
[class-1 data, see Fig. 1(a)]. Each image in class-1 of the soliton dataset is tagged with the physically-
motivated subcategory label and associated physics-based fits of an inverted and skewed Mexican-
hat function to one-dimensional (1D) background-subtracted projections of solitonic excitations
candidates obtained using a least-squares fit [29]. The original class-1 dataset is highly imbalanced,
with the largest longitudinal class consisting of 2,229 images and the smallest, clockwise vortices
class consisting of only 28 images. We employ several strategies to mitigate this imbalance. Since
feature orientation is important to our tabularization method, data labeled as canted is excluded
from analysis due to the orientation variability combined with the small class size. The remaining
5-class dataset is further simplified into a 3-class dataset by combining data from the physically
symmetric top and bottom partial soliton classes into a single category partial and the clockwise and
counterclockwise solitonic vortices into a single category vortex. The data from the bottom partial
and counterclockwise solitonic vortex classes are augmented via horizontal flipping to be consistent
with the top partial and clockwise solitonic vortex classes, respectively. We call the final dataset used
in the experiments the reduced soliton dataset. The class split for the final 3 classes is as follows:
2,229 for the longitudinal class, 796 for the partial class, and 66 for the vortex class.

In this work, we investigate the utility of EBMs in classifying the reduced soliton data and compare
their accuracy and explainability to other well-known methods. The contributions lie in three areas:

• We propose a novel Gabor wavelet transform (GWT)-based method to extract and tabularize
visual features from images, moving beyond simpler, pixel-based approaches.

• We report a first-ever demonstration of applying EBMs to image data, verifying that EBMs
can effectively reveal physically-meaningful patterns among the tabularized features.

• We show that our proposed approach provides better explanations than other state-of-the-art
ML explainability methods for images.

2 Background and Methods

This paper focuses on investigating whether EBMs can be adapted to classify image data. EBMs
are generalized additive models (GAMs) that account for pairwise interactions: g(E[y]) = β +∑

i fi(xi) +
∑

i ̸=j fij(xi, xj), where g is the link function [11, 16]. The contribution of each feature
to a final prediction can be visualized and understood either through a plot of fi(xi) vs. xi for the
univariate terms or through heatmaps of the fij(xi, xj) in the two-dimensional xi, xj-plane. This
ability to analyze features either independently or, for the strongly interacting ones, as pairs is what
makes EBMs highly intelligible. Moreover, since EBMs are additive models, they are modular in the
sense that it is easy to reason about the contribution of each feature to the prediction [11].
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To use EBMs, we need to automatically and in an interpretable way translate the primary visual
features captured in images into a tabular representation. We do this using GWT and parameter space
optimization. The GWT is a multi-scale multi-directional wavelet initially formulated for signal
representation that currently sees modern use in feature detection in computer vision and image
processing. It has been successfully used in computer vision tasks such as character recognition [30],
face detection [31] and iris detection [32]. The GWT relies on convolving the Gabor kernel with an
input image across a range of parameters to extract the characteristic features in the image.

The 2D GWT kernel is defined by the product of a Gaussian and a plane wave:

Gσx,σy,θ,λ(x, y) = 1/(
√
2πσxσy) exp(−(x2/2σ2

x + y2/2σ2
y) · exp[i · λ(x · sin(θ) + y · cos(θ))],

where σx and σy represent scale in x and y, and θ and λ are the wave direction and wavelength. By
optimizing the parameters defining the Gabor kernel on a per-image basis, we can determine the

Algorithm 1 Gabor Quad Transform
Step 1. Find σ∗

x, σ
∗
y , λ

∗ given image u(x, y).
1: Input: image u, parameter spaces Σx,Σy,Λ
2: σ∗

x, σ
∗
y , λ

∗ = argmax(||Gσx,σy,λ ∗ u||2) for σx ∈
Σx, σy ∈ Σy, λ ∈ Λ

3: Return: optimal parameters (σ∗
x, σ

∗
y , λ

∗)
Step 2. Compute ℓ2 quad responses using optimal pa-
rameters from Step 1.
1: Input: image u, optimal parameters (σ∗

x, σ
∗
y , λ

∗)
2: with uG∗(x, y) = Gσ∗

x,σ∗
y ,λ∗ ∗ u compute integral

image iuG∗ =
∑

x′≤x,y′≤y uG∗(x, y)2

3: compute x∗, y∗ = argmax((Gσx,σy,λ ∗ u)(x, y))
4: compute quadrant responses ||ua,b,c,d||2 =√

iuG∗(a) + iuG∗(d)− iuG∗(b)− iuG∗(c) for
points a, b, c, d ∈ (x∗ − σ∗

x, x
∗, x∗ + σ∗

x)× (y∗ −
σ∗
y , y

∗, y∗ + σ∗
y)

5: Return: σ∗
x, σ

∗
y , λ

∗, x∗, y∗, ||ua,b,c,d||2

locations and the size (scale) of the regions
of interest (ROI). This is similar to the tech-
niques used for blob-detection in scale-space
theory [33], where features represent local max-
ima over the parameter space. The optimized
kernels are then used to extract the local char-
acteristics of those regions. Finally, to translate
those local characteristics into a tabular repre-
sentation, the response of the data to the filter
can be quantified using a histogram, the ℓ2-norm,
the total variation norm, or other metrics. The
procedural steps for the proposed tabularization
algorithm in the form of pseudocode are pre-
sented in Algorithm 1. The resulting tables are
then used to train EBMs and their accuracy and
explainability are compared against different
convolutional neural networks (CNNs).

3 Results

For the reduced solitonic excitation dataset, there is a single dominant ROI (at a single orientation)
that corresponds to the primary excitation and its shoulders. Due to the unique expressiveness of the
GWT, we can locate this region with a single filter. This process consists of optimizing over the space
of GWT parameters σx ∈ Σx, σy ∈ Σy, λ ∈ Λ, with θ = 0. Specifically, σ∗

x and σ∗
y correspond

to the optimized width and height of the excitation while λ∗ determines its optimized scale. In our
implementation, it is beneficial to use knowledge of the image structure to aid in optimization, which
we present in Algorithm 2. While computationally intensive compared with using a single predefined
filter, this enables a reliable and accurate description of the excitation with features that completely
describe the ROI for tabularization.

Algorithm 2 Parameter optimization
Step 1a. Find σ∗

y , λ
∗ given image u(x, y).

1: Input: image u, large σN
x

2: σ∗
y , λ

∗ = argmax(||GσN
x ,σy,λ

∗u||2)
3: Return: optimal (σ∗

y , λ
∗)

Step 1b. Find σ∗
x given image u(x, y).

1: Input: image u, large σN
x

2: σ∗
x = argmax(||Gσx,σ∗

y ,λ∗ ∗ u||2)
3: Return: optimal σ∗

x

Given the role of symmetry in distinguishing different
classes of excitations, our algorithm extracts the magnitudes
in each quadrant of the region obtained by the optimized
parameters. These subregions are found by describing the
region around (x∗, y∗) = argmax((Gσ∗

x,σ
∗
y ,λ

∗ ∗ u)(x, y))

bounded by (±σ∗
x,±σ∗

y). Each subregion is measured in
terms of its ℓ2-norm to acquire a single numerical description
of the response. For each image, this produces raw features
of the form ||(G∗u)>x∗

>y∗ ||2, ||(G∗u)>x∗

<y∗ ||2, ||(G∗u)<x∗

>y∗ ||2,

||(G ∗ u)<x∗

<y∗ ||2, where ||(G ∗ u)(·)(·)||2 is the corresponding integral image in the respective quadrants.

Classification Experiments. We assess the classification performance of various methods using
accuracy, precision, and recall. We carry out five 6-fold stratified cross-validations and report averaged
results, with precision and recall analyzed at the class level. The experiments involve benchmarking
EBMs on the physics-based fits (PF+EBM) and testing new methods using tabularized features from
GWT (GF) and EBMs (GF+EBM). We also use EBMs on data representing GWT features and
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Table 1: The table presents the results of 6-fold cross-validation for the reduced soliton dataset. The
results are sorted by method (columns) and by data class (rows).

Class Metric PF GF GF+PF DNN CNN CAE+NN EGF EGF+PF

+EBM +EBM

All Accuracy 87.4(4) 84.8(6) 91.4(4) 82.3(8) 86.9(9) 91.9(5) 88.0(4) 92.8(5)

Longitud. Precision 89.4(2) 87.4(6) 92.7(6) 88.2(1.3) 88.8(7) 95.4(8) 90.4(3) 94.0(4)
Recall 95.7(4) 93.9(7) 96.9(4) 93.0(1.3) 95.8(1.4) 94.3(5) 95.1(5) 97.4(2)

Partial Precision 81.0(1.2) 76.3(1.8) 87.5(1.1) 83.0(3.5) 84.6(2.5) 85.4(1.9) 87.7(7) 89.1(1.2)
Recall 71.4(7) 66.2(2.1) 81.0(2.0) 64.6(3.2) 67.9(3.6) 84.5(2.7) 73.3(8) 83.7(1.4)

Vortex Precision 22.6(20.9) 16.7(11.5) 83.9(4.4) 17.7(10.1) 26.8(8.8) 62.3(12.4) 67.3(4.6) 87.5(2.9)
Recall 1.8(1.8) 1.5(1.0) 31.8(3.3) 50.7(9.4) 43.8(6.4) 96.6(2.8) 22.4(8.5) 44.5(3.1)

the physics-based fits (GF+PF+EBM). All tests using EBMs are performed in the one-versus-rest
fashion.

For comparison with more advanced classification techniques, we test several NN-based classification
methods. Due to the challenges posed by the soliton dataset, including small dataset size, grayscale
images, and class imbalance, we opt for smaller NN models. We train a DNN with just fully connected
layers, a fine-tuned convolutional autoencoder (CAE+NN), and a simple CNN. All NN models were
trained using the Adam optimizer [34] with a scheduled learning rate and early stopping callback.

The results from all experiments are presented in Table 1. The GF+PF+EBM method is on par
with the CAE+NN method in terms of accuracy, with 91.4(4) % and 91.9(5) %, respectively. On a
per-class level, we observe that the GF+PF+EBM method has comparable precision and recall to the
CAE+NN method for the longitudinal and partial classes. For the vortex class, the GF+PF+EBM
method has significantly better precision, whereas CAE+NN method has a better recall.

Interpretability Results. From the interpretability results for the CAE+NN approach in Figs. 2(b)-(d),
we can see that the Grad-CAM approach tends to take relevant parts of the input into account when
producing the output. For LIME, the overlap between the relevant input region and the mask is
small. However, LIME has trouble dealing directly with grayscale data and requires an intermediate
conversion from grayscale to RGB which likely affects its performance 1. SHAP seems to highlight
regions around the relevant area as well, although it additionally highlights a lot of the non-relevant
regions. While interpretability approaches such as LIME, GradCAM, and SHAP offer valuable
insights, they have inherent limitations that we seek to overcome. First, both LIME and GradCAM
are very sensitive to perturbations, and using a smoothing technique is not always viable due to
the nature of the image data [14]. LIME and SHAP have parameters that need to be optimized,
such as surrogate model type, superpixel segmentation algorithm and distance metric for LIME, and
estimation method and number of samples for SHAP. Choosing optimal parameters is time-consuming
while sub-optimal parameters can significantly impact the quality of the explanations produced and
slow down the analysis. All three methods can struggle to capture complex interactions between
features, which can lead to inaccurate or incomplete explanations. Finally, the NN-based approaches
are not user-friendly as localizing and analyzing the region of interest programmatically is difficult
and would require a lot of additional computation. We aim to address these limitations using our
EGF+EBM approach.

In the first series of experiments with EBMs, we test the EBM on the raw GF consisting of top left
(TL), top right (TR), bottom left (BL), and bottom right (BR) measures as well as the optimized
excitation center (x∗, y∗). These measures correspond to the intensity of the GWT filter response in
each quadrant of the extracted ROI shown in Fig. 1. EBMs provide a global explanation for all the
predictions by graphically depicting the contribution of individual features and pairwise correlations
to the model. For example, Fig. 2(e) and Fig. 2(f) show feature importance for class partial and
vortex, respectively.

Notably, for the partial class, we observe that the offset in the y direction (y∗) emerged as one of
the most significant features, aligning with human intuition due to the nature of partial excitations
occurring in the upper half of the BEC. In contrast, for the vortex class, the expected asymmetry
with respect to the x-axis is confirmed by EBMs consistently ranking the TR and BR quadrants as

1As noted by the authors of the LIME open-source package [35]
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Figure 2: (a) Sample image from the reduced soliton dataset. (b)-(d) Interpretability result for the
CAE+NN method: (b) Grad-CAM heatmap, (c) LIME mask, (d) SHAP heatmap. (e)-(i) Interpretabil-
ity results for the EBMs: feature importance for the (e) partial and (f) vortex classes, (g) pairwise
interaction for TL and TR features for the vortex class, (h) engineered features importance for vortex
class, and (i) the BL/BR engineered feature dependence plot.

the most important. The pairwise interaction map for these two features shown in Fig. 2(g) further
confirms this intuitive dependence. Such correlations can guide the creation of new features capturing
such interactions, potentially enhancing model performance. Indeed, adding engineered GF (EGF)
features representing primary pairs (TL/BL, TR/BR, TL/TR, and BL/BR) resulted in substantial
performance improvements, particularly for the underrepresented vortex class as seen in Table 1.

Figure 2(h) further confirms the importance of EGF features, with all four included in the list of top 7
features, which indicates that they indeed provide additional predictive value. Figure 2(i) shows that
BL/BR < 1 (i.e., stronger response in BR than in BL quadrant) indicates a vortex characteristic,
which, again, agrees with the intuition. Similar analysis can be carried out for the remaining features
and for all classes further validating the interpretability of the FGs and EFGs.

4 Conclusions and Future Work

In this paper, we explore the application of GWT-based feature extraction and parameter optimization
to extend EBMs for image data analysis. Comparative assessments against state-of-the-art DNN
methods reveal that the GWT-based approach achieves comparable accuracy while also producing
intuitive explanations. While our experiments focus on soliton in BEC data, our methods can readily
adapt to other image-based scientific datasets with underlying visual structures. For more complex
data requiring considerations of feature orientation or scale, the design of a tailored GWT-based
filter bank may be necessary. Future research directions include applying these techniques to diverse
scientific datasets, such as additional cold atoms dataset and medical datasets. We also plan to
investigate their utility in clustering unlabeled data with unknown class counts.
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