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Abstract

Machine learning has been successfully used to study phase transitions. One of
the most popular approaches to identifying critical points from data without prior
knowledge of the underlying phases is the learning-by-confusion scheme. As
input, it requires system samples drawn from a grid of the parameter whose change
is associated with potential phase transitions. Up to now, the scheme required
training a distinct binary classifier for each possible splitting of the grid into two
sides, resulting in a computational cost that scales linearly with the number of
grid points. In this work, we propose and showcase an alternative implementation
that only requires the training of a single multi-class classifier. Ideally, such multi-
task learning eliminates the scaling with respect to the number of grid points.
In applications to the Ising model and an image dataset generated with Stable
Diffusion, we find significant speedups that closely correspond to the ideal case,
with only minor deviations.

1 Introduction

An exciting application of machine learning in physics is the detection of phase transitions from
data [1–11]: the state of a physical system is sampled at different values of a tuning parameter that
determines the distribution of samples. The states are fed to an algorithm that identifies the parameter
values at which the system undergoes a phase transition.

One of the most popular methods to accomplish this task is learning-by-confusion [3], which has
successfully revealed phase transitions in a large variety of physical systems using data from both
simulation [3, 12–26] and experiment [19]. So far, its implementation has been computationally
costly, as it involves training K distinct binary classifiers and analyzing their accuracy, where K + 1
is the number of sampled values of the tuning parameter.

In this work, we propose an alternative implementation of the learning-by-confusion scheme that
works by training a single K-class classifier, which thus promises a speedup by a factor of K in
the ideal case. We demonstrate a significant speedup in two applications: First, the thermal phase
transition of the Ising model, which is theoretically well-understood and allows for a comparison
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with established results. Second, an image dataset generated with Stable Diffusion [27], which serves
as a more challenging example where no prior knowledge of transitions is available.

2 Unbiased Learning-by-Confusion with Multi-Task Learning

In the simplest use case of the learning-by-confusion method [3], a physical system undergoes a
phase transition as a function of a single real-valued parameter θ. To detect the critical point θ∗ at
which the phase transition occurs, the θ-axis is discretized into K + 1 different points and at each
point, M samples are drawn from the system. With K+1 points, there are K possibilities to separate
the θ-axis in two non-empty, contiguous regions Θ<

k = {θ|θ < θ∗k} and Θ>
k = {θ|θ > θ∗k}, each

corresponding to a tentative location θ∗k = (θk + θk+1)/2 of the phase transition that lies between
the grid points θk and θk+1. For each of these splittings, a separate classifier is trained to distinguish
the two corresponding classes of samples, see Fig. 1(a). Intuitively, whichever classifier k is least
confused, i.e., achieves the lowest error rate on evaluation, must have been trained on the most natural
splitting of the data. Therefore, the value θ∗k associated with the lowest error rate is our best guess for
the location of the phase transition.

The loss function of the kth classifier is an unbiased binary cross-entropy loss

Lk = −1
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k | is the size of the dataset Dy
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class probability of the classifier. The normalization 1
|Dy| compensates for the imbalance of classes

that would otherwise bias the signal and may lead to a failure of the confusion scheme [26]. Similarly,
the error rate of the kth classifier can be estimated as
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2

∑
y∈{>,<}

1

|Dy
k|

∑
x∈Dy

k

errk(y,x), (2)

where for each sample x the error errk(y,x) is 0 if it is classified correctly and 1 if it is classified
erroneously. During training, Dy

k in Eq. (1) refers to a training set, while it typically refers to a
separate evaluation set when estimating the error via Eq. (2).
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Figure 1: Schematic illustration of the learning-by-confusion method for detecting phase transitions
(a) with original single-task architecture and (b) with our proposed multi-task architecture. (c) Classi-
fication error for the Ising model at each node using a single network trained on spin configurations.
The solid lines correspond to, from top to bottom, the result after 0, 1, 5, and 50 epochs of training
averaged over 5 independent runs. The vertical dotted line indicates the true location of the phase
transition and the dashed line corresponds to an estimate of the Bayes-optimal error rate obtained
using a histogram-based generative classifier in energy space [20, 26].

Instead of training a new classifier for each tentative splitting k, we propose to train a single classifier
with K outputs {p̂k}K−1

k=0 , cf. Figs. 1(a) and (b). The loss function for this multi-task architecture
is L = 1

K

∑K−1
k=0 Lk. The evaluation of the error rate remains the same as before. Multi-task

learning [28, 29] is expected to be highly efficient because the K classification tasks are very similar
to each other and only differ in a slight alteration of the tentative splitting of the parameter space.
Thus, the learned features are very much transferable between tasks.
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3 Benchmark and Application

3.1 Ising Model

As a test system that has been extensively analyzed theoretically and for which established benchmarks
are available, we consider the two-dimensional square-lattice ferromagnetic Ising model. It is
described by the energy function E(σ) = −J

∑
⟨ij⟩ σiσj , where the sum runs over all nearest-

neighboring sites (with periodic boundary conditions), J is the interaction strength (J > 0), and
σi ∈ {+1,−1} denotes the discrete spin variable at lattice site i. The Ising model exhibits a phase
transition between a paramagnetic phase at high temperature T and a ferromagnetic phase at low
temperature [30].

To generate the dataset for the Ising model, we sample spin configurations σ on a 60 × 60 lattice
from Boltzmann distributions at 200 equally-spaced parameter values between 0.05 kBT/J and 10
kBT/J via Markov chain Monte Carlo, see Appendix A.1.2 for details. Figure 1(c) shows how the
learning-by-confusion signal of a multi-task convolutional neural network trained on this dataset
evolves with training epochs, see Appendix A.1.2 for implementation details. Eventually, the node
achieving the lowest error rate coincides with the critical point.

To compare the single- and multi-task approach, we train 4-layer convolutional networks with
otherwise identical architectures and training settings. Figure 2(a) shows how the error rate evolves
as a function of the training epoch at nodes below, near, and above the critical point. In all cases,
single-task learning-by-confusion shows a slightly faster rate of convergence early on during training.
Below the phase transition, multi-task learning-by-confusion does not achieve an error rate as low
as single-task learning-by-confusion. In contrast, near and above the phase transition, multi-task
learning-by-confusion eventually catches up and even achieves lower error rates.

We also studied the training behavior of multi-task networks that each have an output node corre-
sponding to the true critical point as well as a varying number of additional output nodes. In particular,
we recorded the number of epochs it takes to reach different error thresholds at their critical output
node. At low thresholds, the difference in the number of epochs between different architectures
was negligible. At high thresholds, we observed the number of epochs to marginally increase with
the number of output nodes. However, we observed no clear scaling and any overhead was minor
(at worst ≈ ×6 for some combinations of training hyperparameters and model architectures) as
compared to the speedup gained through multi-tasking.
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Figure 2: Error rate at representative nodes as a function of training epoch for single-task and multi-
task learning-by-confusion for (a) the Ising dataset averaged over 5 runs and (b) the Stable Diffusion
dataset averaged over 4 runs. Error bars derived from the standard deviation are negligible (same
scale as markers), and underestimate the true confidence intervals, e.g., due to the non-Gaussian
nature of the data.

3.2 Stable Diffusion

We now consider an image dataset generated using Stable Diffusion [27], where for each integer
θ in [1900, 2050) images are sampled with the prompt “technology of the year θ”. For example,
node 0 corresponds to the separator between the years 1900 and 1901. While this dataset does not
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feature phase transitions in the physical sense, the learning-by-confusion scheme can be used to
identify points in parameter space at which the data distribution changes rapidly. Note that no prior
benchmark is available for this data and the predicted change points cannot be verified by theory.
As the images have complex features comparable to typical image datasets, we load the pretrained
ResNet-50 [31] from PyTorch [32], and exchange its final layer to fit our task, see Appendix A.1.1
for implementation details.

Figure 3 shows (at least) three major local minima indicating rapid changes in the image dataset; one
between the years 1929 and 1930, a second, broader one in the 1990s, and a third one between 2021
and 2022. The Stable Diffusion model has only encountered images of actual technology from before
and around 2022 in its training dataset LAION-5B [33], which may explain the third minimum. Due
to the small dataset size and the resulting challenges in generalization, the signal is generally less
reliable close to the edges.
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Figure 3: Error rate obtained using multi-task learning-by-confusion for the Stable Diffusion dataset
as a function of θ in prompt "technology of the year θ". The colored lines depict the results obtained
by training on three separate datasets, each averaged over 10 runs as described in Appendix A.1 in
more detail. The black line represents their mean.

Figure 2(b) shows the error at representative points, the extrema at nodes 29, 56, 121 (corresponding
to the transitions between years 1929-1930, 1956-1957, and 2021-2022) as a function of the training
epoch for a single-task and multi-task network with otherwise identical network architecture and
training parameters. As there is no significant overhead, the speedup of the multi-task approach is
approximately given by the number of grid separators (here K = 149).

4 Discussion and Conclusion

In the limit of infinite model capacity, both multi-task and single-task learning models ultimately
yield the same predictions, because the multi-task loss corresponds to the average of the single-task
losses. However, in real-world scenarios where model expressivity, training time, and data are limited,
the learning behavior depends on the particulars of the model and dataset at hand.

For the Ising dataset analyzed with a shallow 4-layer convolutional net, we observed some differences
in predictions between the single-task and multi-task architectures, but not near the critical point
where it would matter most. At the critical point, we found a minor overhead with respect to the ideal
speedup linear in the number of grid points.

The analysis of the Stable Diffusion dataset with the 50-layer ResNet-50 demonstrates the viability
of the multi-task learning-by-confusion algorithm to reveal rapid changes in the distribution of a
complex dataset, where a theoretical description is not available and a larger model is required
to learn the features. In this case, we found no signs of an overhead. This is in line with our
general expectation that the relative overhead associated with the multi-task approach decreases as
the underlying classification tasks get more complicated.

In conclusion, we find the multi-task implementation of the learning-by-confusion algorithm to
provide much faster execution on large parameter grids as compared to its single-task version.
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Broader Impact

The characterization of phases of matter and the study of critical phenomena are of great importance
in physics. Our work contributes a faster variant of a highly popular unsupervised learning method
for the data-driven detection of phase transitions.

By revealing structure in the output images of the Stable Diffusion generative model, we demonstrate
an application of the learning-by-confusion method for change point detection beyond physics.
For datasets outside statistical physics, the demonstrated speedup of our multi-task approach is
particularly impactful as their analysis typically requires a large amount of computational resources.
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A Appendix

A.1 Implementation

A Python implementation of the single-task and multi-task learning by confusion method is available
at [34]. The hyperparameters used to generate the figures in this article are summarized in Table 1.
Here, Mtrain and Mvalid refer to the number of samples per grid point within the training and validation
set, respectively. For training, we use the Adam optimizer [35] with a learning rate given in Table 1.

Table 1: Hyperparameters employed in this paper (default settings are used except where explicitly
stated).

Figure Mtrain Mvalid batch size learning rate training epochs
1(c) 1000 1000 1024 1× 10−4 50
2(a) 1000 1000 1024 1× 10−4 30
2(b) 1000 1000 1024 5× 10−4 50

3 3 × 16 3 × 11 256 5× 10−5 150
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A.1.1 Stable Diffusion

The total Stable Diffusion dataset contains 3 × 27 images per year. In Fig. 3, the assignment of
training and validation set is randomized before each run, so the distinction between training set and
validation set does not strictly apply. The number of training epochs was set to 150 as the overall
validation loss started increasing again around that point. Because the accuracy at individual nodes
may have peaked earlier already, each curve represents the minimal error across all epochs. In Fig. 2,
we only use one of the three subsets making up the Stable Diffusion dataset corresponding to the seed
numbers N < 27 in the accompanying Python script, and the images with seed numbers N < 16
are fixed as the training set. A Python script with seeds to generate the dataset and a notebook to
perform training can be found at [34].

A.1.2 Ising Model

The Ising dataset is generated by sampling spin configurations from Boltzmann distributions at various
temperatures via the Metropolis-Hastings algorithm. The lattice is initialized in a state with all spins
pointing up and updated by drawing a random spin that is flipped with probability min(1, e−∆E/kBT ),
where ∆E is the energy difference resulting from the spin flip. In a thermalization period, we sweep
the complete lattice 105 times. Afterward, we collect samples, increase the temperature, and start
another thermalization period.

For the Ising model, we utilized fixed training and validation sets, as randomization in the split was
unnecessary due to the abundance of data. The convolutional neural network architecture utilized to
produce the results in Figs. 1(c) and 2(a) can be found in the accompanying code [34].

A.2 Compute Resources

For our computations, we use an NVIDIA GTX 3090 GPU and an Intel i9-10900K CPU, where a
training and validation epoch finishes within a few seconds for both the Ising and Stable Diffusion
dataset.
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