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Abstract

Directed energy deposition (DED) is a promising metal additive manufacturing
technology capable of 3D printing metal parts with complex geometries at lower
cost compared to traditional manufacturing. The technology is most effective
when process parameters like laser scan speed and power are optimized for a
particular geometry and alloy. To accelerate optimization, we apply a data-driven,
parameterized, non-linear reduced-order model (ROM) called Gaussian Process
Latent Space Dynamics Identification (GPLaSDI) to physics-based DED simulation
data. With an appropriate choice of hyperparameters, GPLaSDI is an effective
ROM for this application, with a worst-case error of about 8% and a speed-up of
about 1, 000, 000x with respect to the corresponding physics-based data.

1 Introduction

In Directed Energy Deposition (DED) additive manufacturing, or metal 3D printing, metal powder is
fed through a nozzle and directed down to a build plate, where a laser fuses the incoming powder into
the previous layer or substrate. An important goal in DED is to optimize process parameters such as
laser power and scan speed to control the temperature history and prevent defects in prints. Currently,
the additive manufacturing community resorts to a trial and error approach involving numerous
experiments, each of which can be time-consuming and costly. This process must be repeated for any
new printing material, and the results may vary depending on the complexity of the part or the 3D
printer itself.

Previous approaches have attempted analytic solutions to this problem, which in its simplest form asks
the temperature field for a moving, distributed heat source [1–3]. However, analytic approaches do
not offer the flexibility to handle irregular domains and complicated initial and boundary conditions
found in many additive manufacturing applications. Such flexibility is afforded by high-fidelity finite
element-based models of DED [4], but simulations can take weeks to run, making them unsuitable
for parameter optimization.
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Figure 1: Schematic of dataset generation. Single-track DED simulations were generated for
parameters (laser power and laser scan speed) on a 5x5 grid. Temperature data was extracted for each
simulation and arranged into a training snapshot matrix.

Our approach is to use reduced order models (ROMs), informed by simulations or experiments. ROMs
can be orders of magnitude faster with a marginal reduction in accuracy and have been successfully
applied to various physics problems [5–16]. They may fully replace full-order simulations or
experiments or be used as surrogate models such as in the Surrogate Management Framework [17].
In this work, we apply the recently-developed ROM known as Gaussian Process Latent Space
Dynamics Identification (GPLaSDI) [18] to parameterized DED simulation data to predict, for given
process parameters, the time-dependent temperature field, which may then be used as an input to
a microstructure evolution model. A major advantage of GPLaSDI is its use of an autoencoder to
spatially compress data in a nonlinear manner, which, compared to linear compression methods such
as the singular value decomposition, can better capture the advection-like behavior introduced by the
motion of the DED print head.

2 Methods

2.1 DED simulation data

In this work, we consider data obtained from DED simulations performed in ALE3D [19]. The data
was parameterized with respect to two important parameters in DED: laser power P and laser scan
speed S. Specifically, we generated single-track DED simulations for each sample on a 5x5 grid
in parameter space – P ∈ [120, 130, 140, 150, 160] W, S ∈ [0.08, 0.09, 0.10, 0.11, 0.12] m/s. Each
simulation modeled the deposition of a single track of titanium alloy Ti-6Al-4V (Ti64) at a rate of 5
g/min over a length of 2.5mm. The computational mesh consisted of Nu = 25, 990 nodes, and each
simulation was run between 100 and 150 ms, from which we extract Nt + 1 = 101 evenly spaced
time steps for our dataset. Each simulation took on average 2.5 hours on a single core of an Intel(R)
Xeon(R) Platinum 8479 CPU. From this dataset, we select Nµ samples for the training set; how the
training set is chosen will be described later. The remainder are part of the test set.

Let µ(i) = (P (i), S(i)) be the ith parameter vector in the training set. The quantity of interest
from these simulations is the time-dependent temperature field, u. Let u(i)

n ∈ RNu be the snapshot
vector of temperature data for all nodes at time step n for parameter vector µ(i), and let U(i) =[
u
(i)
0 , ...,u

(i)
Nt

]
∈ R(Nt+1)×Nu be the data matrix for all nodes and all time steps for parameter vector

µ(i). Combining all these matrices together, we define a 3rd order tensor U =
[
U(1), ...,U(Nµ)

]
∈

RNµ×(Nt+1)×Nu , which constitutes the training dataset in this work. See Figure 1 for a visual
description of this dataset.

2.2 GPLaSDI

GPLaSDI is a parameterized, data-driven reduced order modeling method which consists of three
main features: 1) an autoencoder to learn a nonlinear spatial compression of data to a latent space; 2)
dynamics identification within the latent space using Sparse Identification of Nonlinear Dynamics
(SINDy) [20]; 3) Gaussian process interpolation of latent space dynamical systems over the parameter
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space to achieve parameterization. Here, we briefly describe GPLaSDI. More details may be found in
[18].

The autoencoder is composed of two neural networks: an encoder ϕe parameterized by weights and
biases θe and a decoder ϕd parameterized by weights and biases θd. The encoder spatially compresses
the full space data matrix U ∈ RNµ×(Nt+1)×Nu to a latent space data matrix Z ∈ RNµ×(Nt+1)×Nz ,
where Nz ≪ Nu. Conversely, the decoder spatially decompresses Z into a reconstructed full space
representation Û ∈ RNµ×(Nt+1)×Nu . We define an autoencoder reconstruction loss as the mean
squared error between U and Û,

LAE(θe, θd) = ||U− Û||22. (1)

Z may be interpreted as a collection of latent space trajectories Z =
[
Z(1), ...,Z(Nµ)

]
, where

Z(i) =
[
z
(i)
0 , ..., z

(i)
Nt

]
corresponds to parameter vector µ(i). In the SINDy interpretation, each

trajectory is assumed to come from a dynamical system,

dz

dt
= f (i)(z); z(0) = z

(i)
0 . (2)

The velocity f (i)(z) is approximated by a linear combination of user-defined “library" functions of z,

f (i)(z) = Φ(z) ·Ξ(i)T , (3)

where Φ(z) is a matrix of candidate terms involving z, and Ξ(i) is an (as yet unknown) matrix of
coefficients. In this work, we limit the library to constant and linear terms, thereby approximating the
latent space dynamics with an affine ODE system. Ξ(i) is determined by first computing latent space
velocities Ż(i) using a first-order finite difference scheme on Z(i), then solving the linear regression
problem

Ż(i) = Φ(Z(i)) ·Ξ(i)T . (4)

Note that separate Ξ(i) are learned for each µ(i). The collection of dynamics coefficient matrices is
denoted Ξ =

[
Ξ(1), ...,Ξ(Nµ)

]
. Associated with the dynamics identification is a loss term

LSINDy(Ξ) =
1

Nµ

Nµ∑
i=1

||Ż(i) −Φ(z) ·Ξ(i)T ||22. (5)

The model is trained by minimizing the following total loss function,

L(θe, θd,Ξ) = β1LAE(θe, θd) + β2LSINDy(Ξ) + β3||Ξ||22, (6)

where the third term is an important regularization term, and β1, β2, and β3 are weighting hyperpa-
rameters.

The trained model can then be used to predict a time-dependent temperature field, given a new
parameter vector µ(∗) and a full space initial condition u

(∗)
0 , which in our case is always uniform

room temperature. First, u(∗)
0 is compressed to the latent space using the encoder ϕe, yielding a latent

space initial condition z
(∗)
0 . Then, a predicted latent space trajectory Z̃(∗) is obtained by integrating

in time, where the coefficient matrix Ξ(∗) is obtained by interpolating the Ξ(i) from training samples
over the parameter space. Gaussian process interpolation is used, which has the additional benefit of
built-in uncertainty quantification. Finally, the decoder ϕd is used to generate the predicted full space
trajectory Ũ(∗). Note that due to the uncertainty in Ξ(∗), multiple predicted trajectories produce
slightly different results, and the mean and variance may be computed.

Another feature of GPLaSDI is a variance-based greedy sampling algorithm. During training, samples
may be added to the training set every Ngreedy epochs. If there are currently Nµ samples in the
training set, the additional (Nµ +1)th sample is chosen as that with the largest prediction uncertainty,
as measured by the variance of the full order prediction.
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3 Results

The following hyperparameters were found to yield satisfactory preliminary results. The encoder
architecture follows a 25,990-1000-200-50-20-5 structure, comprising four hidden linear layers of
size 1000, 200, 50, and 20, and a latent space of dimension 5. The decoder is symmetric with respect
to the encoder. All layers except for the last in the encoder and decoder are connected with Softplus
activation functions. The model is trained for Nepoch = 1, 000, 000 epochs using the Adam optimizer
with a learning rate of α = 10−4. The training dataset begins with Nµ = 4 samples corresponding
to the corners of the parameter grid. Starting with corner points is an arbitrary but intuitive choice,
since it ensures that predictions for all other points are interpolations rather than extrapolations. A
new sample is added to the training set every Ngreedy = 200, 000 epochs. For the loss weights, we
choose β1 = β2 = 1. The performance depends strongly on the value of β3, and we compare results
for β3 of 10−3 and 101.

To assess model performance, we use the maximum relative error, defined as

e(Ũ(∗),U(∗)) = max
n

( ||ũ(∗)
n − u

(∗)
n ||2

||u(∗)
n ||2

)
. (7)

In Figure 2, the left column shows the GPLaSDI results for β3 = 10−3, while the right column
shows results for β3 = 101. The top row shows the maximum relative error over the parameter grid,
with training samples indicated by a black border. Clearly, β3 is a very important hyperparameter,
with extremely high errors for β3 = 10−3 and only 8.11% test error in the worst case for β3 = 101.
In the second row, we compare the autoencoder projection errors vs. time, obtained by encoding
and decoding the ground truth test data, for a typical test sample µ(∗) = (140W, 0.1m/s). For both
values of β3, projection errors are low, indicating that the autoencoder is not responsible for the
vast difference in performance. Rather, the difference stems from disparate latent space dynamics
behavior. In the third row, we show the latent space trajectories – both the true Z(∗) and the (multiple)
approximated Z̃(∗) – for the same typical test sample. For β3 = 10−3, the approximated trajectories
are extremely unstable and blow up, while for β3 = 101, the approximated trajectories match the
true trajectory well. The stark difference in behavior arises from differences in the character of the
dynamical system. In the fourth row, we visualize the same trajectories in a projected phase space,
plotting the second latent space variable z1 (orange lines) vs. the first latent space variable z0 (blue
lines). In addition, the arrows indicate the identified latent space velocity f (∗)(z) = Φ(z) · Ξ(∗)T

projected onto the z0-z1 plane. Arrows are drawn at points on and slightly offset from the true
trajectory. As shown, the latent space velocity field for β3 = 10−3 is irregular and varies rapidly,
promoting instability, while the velocity field for β3 = 101 is very smooth, resulting in stable and
accurate latent space trajectories. We note that increasing β3 promotes smoothness because it tends
to reduce the coefficients in Ξ(i), which is closely related to ∇f (i)(z). With respect to computational
cost, each GPLaSDI prediction takes on average 7.84ms on an IBM Power9 CPU core with one
NVIDIA V100 GPU, resulting in a roughly 1, 000, 000 times speed-up compared to the physics-based
simulation.

In GPLaSDI test cases [18], adequate performance was achieved with β3 values of 10−5 or 10−6,
much smaller than that required in our study. We suspect that the parameter grid density plays a
important role, given the 21 × 21 grid in [18] versus our 5 × 5 grid over a similar sized region of
parameter space. From Figure 2, we note that despite instability in identified dynamics, the poor-
performing β3 = 10−3 model has relatively low error on training samples, leading us to attribute poor
test sample predictions to the interaction of unstable dynamics and interpolation over the parameter
space. We propose that increasing grid density mitigates instability on test samples by reducing the
interpolation challenge. Thus, our investigation of the role of β3 may introduce a way to retain model
performance with fewer training samples. Other factors, such as underlying physics and training data
timestep size, may also influence the required β3 size.

4 Conclusion

In this work, we applied GPLaSDI to time-dependent temperature data from single-track DED
simulations for varying laser power and scan speed. With appropriate choice of hyperparameters,
GPLaSDI is an effective reduced order model for this data, achieving 1, 000, 000x speed-up compared
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Figure 2: GPLaSDI results for β3 = 10−3 (left column) and β3 = 101 (right column). First row:
Maximum relative error for the mean GPLaSDI prediction over the parameter grid. Black squares
denote training samples. Second row: Autoencoder projection error for µ(∗) = (140W, 0.1m/s).
Third row: Latent space trajectories Z(∗) (true) and multiple Z̃(∗) (approximated) for µ(∗). Fourth
row: Latent space trajectories (lines) and velocity (arrows) projected onto z0-z1 space for µ(∗).

to full-order, physics-based simulations with only about 8% error in the worst case. In particular,
the coefficient regularization weight β3 has a large impact on model performance for the dataset
considered in this work. For small β3, learned latent space dynamics lead to unstable blow up of
latent space trajectories on test samples. Increasing β3 tends to smooth the latent space velocity field,
preventing instabilities in the latent space trajectories and greatly improving prediction accuracy.
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