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Abstract

Physical constraints have been suggested to make neural network models more gen-
eralizable, act scientifically plausible, and be more data-efficient over unconstrained
baselines. In this report, we present preliminary work on evaluating the effects
of adding soft physical constraints to computer vision neural networks trained to
estimate the conditional density of redshift on input galaxy images for the Sloan
Digital Sky Survey. We introduce physically motivated soft constraint terms that
are not implemented with differential or integral operators. We frame this work
as a simple ablation study where the effect of including soft physical constraints
is compared to an unconstrained baseline. We compare networks using standard
point estimate metrics for photometric redshift estimation, as well as metrics to
evaluate how faithful our conditional density estimate represents the probability
over the ensemble of our test dataset. We find no evidence that the implemented
soft physical constraints are more effective regularizers than augmentation.

1 Introduction

Empirical photometric redshift algorithms regress a target galaxy redshift from measurements of flux
received on a telescope’s band-pass filters. Highly scalable algorithms for photometric redshifts are
critical for achieving the scientific objectives of many upcoming surveys, including the Vera C. Rubin
Legacy Survey of Space and Time (17), the Euclid Wide Survey (21), and the Nancy Roman Space
Telescope Wide Area Survey (1). Utilizing legacy survey measurements of spectroscopic redshift as
labels, we can cast the problem in a supervised machine learning (ML) framework (4, 8, 11, 13, 25).
Recent work that has explored ML for photometric redshifts has focused on how to model and
evaluate estimates of the conditional density estimate (CDE) of redshift (5, 10, 18). See Newman
& Gruen (23) for a review. The benefit of regressing a CDE instead of a point-estimate is that
downstream analyses (e.g., weak lensing studies (22)) make use of the uncertainty and shape encoded
in the CDE. This stresses the importance that the CDEs should be well calibrated and be highly
expressive.

This brief workshop paper builds on work utilizing deep learning computer vision models to regress
photometric redshift conditional density estimates (8, 11, 13, 15, 16) for galaxies with photometry
matching the SDSS main galactic sample (34) and with redshift ẑ ≤ 0.4 by incorporating soft
physical constraints. These are terms added to a loss function that encode known behavior that
solutions should exhibit (20). Our main motivation for including these constraints is to evaluate
whether they lead to a more robust model (as suggested in (2, 28)), here measured using generalization
performance on a held-out portion of our dataset. A secondary motivation is to analyze a broad set
of soft physical constraints for neural network models to explore if they can be incorporated for
scientific objectives.
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2 Background

Neural Networks A set of data inputs and targets D = {(x1, ẑ1), (x2, ẑ2), . . . , (xN , ẑN )} is
sampled from a population X ⊆ (RN×m,RN×1), with N ∈ Z number of samples and input feature
dimension m ∈ Z. A neural network is a vector valued differentiable function that maps input
samples to vector targets, f(xi, θ) → ẑi, and is parameterized by a vector of learnable weights θ.
These are updated to minimize a scalar objective function L, via first order optimizers. This is known
as the standard supervised classification problem.

Photometric Redshift Conditional Density Estimation For this task, we model the probability of
redshift given the input features with a neural network f(xi, θ) ∼ P (ẑ| xi). We frame the problem
as supervised classification (this approach was taken by (25)). The loss, L, is chosen to be the cross
entropy loss with a weight decay penalty,

LCE =
1

N

N∑
i=1

C∑
c=1

− log

(
exp(f(xi, θ)

c)∑C
j=1 exp(f(xi, θ)j)

)
· δẑc + γ0||θ||2.

Where f(xi, θ)
j is the j-th component of the vector-valued function f(xi, θ), δẑc is the standard

Kronecker delta, and γ0 is a hyperparameter controlling the relative importance of the weight decay
term. We have implicitly binned ẑ into discrete bins represented by the vector output of f(xi, θ),
such that δẑc is 1 if zc < ẑ ≤ zc+1, and 0 otherwise.

Physically Constrained Neural Networks We modify the standard conditional density estimation
problem described above by appending additional terms to the cross entropy loss that add additional
constraints for the model to obey. In full generality, these additional terms take the form:

Lphy =

M∑
j=1

γj

N∑
i=1

Pj(f(xi, θ))

where f(xi, θ) is a neural network acting on datapoint xi, M is the number of soft physical constraint
terms, Pj is an additional operator encoding physics, and γj is a scalar hyperparameter controlling
the relative scale of the constraint. The total loss function can be described as the addition of the
ridge regression term and the constraint(s), L = LCE + Lphy

3 Physically Informed Constraints

Probabilistic Spectrophotmetric Flux Calculation The spectrophotometric flux Φ is the flux
observed through a photometric filter R(λ) by convolving a spectral energy density F (λ) with said
filter (24). The spectrophotometric flux is given as:

Φ(λ) =

∫ λb

λa
F (λ)R(λ)λdλ∫ λb

λa
c 1
λR(λ)dλ

let the Φ′ represent the spectrophotometric flux that would be measured from the same spectral flux
density but at a redshift given by zi. The wavelength of such an observer can be related to the original
wavelength by λ′ = 1+zi

1+ẑi
λ. We will find it convenient to notate this factor as ν := 1+zi

1+ẑi
. We show

in Appendix A that:

Φ′(ν) =

∫ νλb

νλa
F (λ)R(λ)ν2λdλ∫ νλb

νλa
c 1
λR(λ)dλ

.

Our neural network f(xi, θ) is trained to approximate the conditional density of redshift given the
input data, p(zi|xi). We can incorporate this CDE by calculating the expectation of Φ′. Interpreting
the c-th output of f(xi, θ) to represent the probability of redshift p(zi), we have E[Φ′](f(xi, θ)) =∫
Φ(ν)f(xi, θ)dz. From this our first physical constraint can be stated as:

PFlux(f(xi, θ)) =
|E[Φ′](f(xi, θ))− Φ′(1)|

Φ′(1)
.
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Invariance to Rotations “Invariances” are constraints that can be interpreted as perturbations
over which the model output should be unchanged (the term was coined in the context of generative
model discriminators in Shah et al. (32)). The cosmological redshift of a galaxy is independent of the
orientation of the galaxy in the sky. We define the operator Θ(x) to be the “rotation” operator, which
takes as input image x and randomly rotates and flips x about the vertical or horizontal axis, then
returns the resulting image. Our network output is constrained to be invariant under these rotations
by incorporating the physical constraint

Protation(f(xi, θ)) = |f(xi, θ)− f(Θ(xi), θ)|2.

Invariance to Background Pixels The redshift of a galaxy is independent of the pixel values that
do not record flux from photons emitted from that galaxy. Let B(x) be an operator that resamples
the noise of the background sky in input image x and returns the resulting image. We describe the
background operator in more detail in appendix B.3. We can write the constraint of invariance to
background as

Pbackground(f(xi, θ)) = |f(xi, θ)− f(B(xi), θ)|2.

Conditional Density Estimate Loss To interpret the output of f(xi, θ) as a conditional density
estimate certain properties must be met. One such property is that we would expect the set of many
observations of the random variable Z from a given galaxy to follow the distribution f(xi, θ).
Because there is only one observed redshift per galaxy, we can not evaluate this property exactly;
however, we can evaluate a related value which is equal to the mean squared differences between the
estimate of CDE and the true CDE up to a constant of integration (18).

PCDE(f(xi, θ)) =

∫
f(xi, θ)

2dz − 2(f(xi, θ)
c=ẑ)2

This term is referred to as the CDE loss within the photometric redshift literature (6, 10, 18).

4 Methodology

Compute We train all models on a DGX-2 A100 server on a single Nvidia A100 GPU.

Datasets We use the benchmark SDSS galactic redshift dataset first described in Pasquet et al. (25)
and made available online in Dey et al. (9)*. We summarize the preparation here, but would refer
the reader to Pasquet et al. (25) for details. The dataset is created from SDSS DR12 by selecting
all spectroscopically confirmed galaxies that satisfy petroMag_r < 17.77, which is the same cut-
off for target selection in the SDSS main galactic sample (34). 64 x 64 pixel cutouts are created
in each of the five SDSS photometric bands (SDSS-u, SDSS-g, SDSS-r, SDSS-i, and SDSS-z)
centered on each galaxy. We place 121,543 (20%) samples randomly into a held-out “test” dataset
to measure performance at the end of our study. There are 486,169 samples in our training dataset,
from which we randomly select 20,000 galaxies for a “validation set” that we can use to monitor
performance throughout each training run. In addition, extinction due to dust is queried using the
galaxies astrometric coordinates and incorporated into the network as an additional input at the fully
connected head (30). This technique is now common practice (25).

Models Neural networks are constructed as a series of non-linear learnable functions that are
commonly abstracted into “layers”, with the entire configuration of layers called an “architecture”.
The choice of architecture represents a significant hyperparameter. Previous photometric redshift
works evaluated the Inception architecture (15, 25, 35), the Capsule Network (8, 29), and ResNet50
(13, 14). For simplicity, we chose to evaluate our model on the ResNet50 architecture provided in the
repository of (13), due to preference for the PyTorch framework (26), and for the fact that ResNet50
architecture has the best reported performance on the scatter-based metric. We provide additional
implementation details such as choice of hyperparameters in Appendix B.4.

Augmentation The invariance to shifts and background pixels would more classically be used as
part of a data augmentation pipeline (13, 25). To separate the regularizing effect of augmentation
from the specific inclusion of the invariance to the loss function, we will train our baseline model with

*Data available online at: https://biprateep.de/encapZulate-1/data.html
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and without rotation and background re-sampling augmentations. In practice, we note that because
we already include the rotation and sampling as part of our pipeline, we actually combine these into
one term:

Pinvariances(f(xi, θ)) = |f(xi, θ)− f(Θ(B(xi)), θ)|2.

4.1 Metrics

We will track three point estimate metrics consistent with evaluations from prior work. As a measure
of spread, we will report the median absolute deviation MAD = 1.4826×median(| f(xi, θ)−ẑ

1+ẑ |).†

We track the bias of the residuals as bias = E[ f(xi, θ)−ẑ
1+ẑ ]. Finally, we report the catastrophic

outlier rate, O as the fraction of predictions with scaled residual greater than 0.05. These are the
same metrics as reported in (8). Taking the number of datapoints in the test dataset to be Ntest,
and the set of integers up to and including N as {1, 2, . . . , N} = [N ] then O = 100

Ntest
×
∣∣{i ∈

[Ntest]| ∥ f(xi, θ)−ẑ
1+ẑ ∥ > 0.05}

∣∣.
In addition, we also evaluate the performance of our network in modeling the conditional density
estimate. We report the value of the mean conditional density estimate loss evaluated over the
held-out test dataset and provide visualizations of the probability integral transform (PIT) (7, 27). We
introduce and present PIT visualizations in appendix C.

5 Results

A series of ResNet50 neural networks were trained on a random sample of galaxies cutouts from the
SDSS DR12 spectroscopic main galaxy sample catalogue to predict the conditional density estimate
of redshift under various types of loss functions. We have three different experimental groups. Our
baseline evaluates ResNet50 trained in the manner of (25) with just the cross-entropy loss function.
We train a second baseline in the same manner but include both random resampling of background
pixels from the sky-distribution and random flips and rotations as augmentations in our data loading
pipeline. Our next group uses all of the physical constraints identified in section 3 in tandem with the
cross entropy loss term. We present our results in Table 1 alongside contemporary works evaluated
on nearly the same dataset.

Table 1: Ablation Performance Metrics And Comparable Works. point-performance metrics
including MAD as a metric of scatter, Bias as the average residual, and O as the percentage of scaled
residuals greater than 0.15 are reported. We measure minor improvements in MAD and Bias using
our physical constraints.

Model MAD Bias O CDE loss Train Time [h]
Baseline w/o Aug. 1.17e-2 7.5e-4 1.48% -8.34e-4 7.16
Baseline w/ Aug. 1.17e-2 7.1e-4 2.22% -7.69e-4 8.16
Physically Constrained 1.12e-2 -1.5e-4 1.88% -8.04e-4 24.52

Beck et al. (3) 1.43e-2 1.6e-3 2.5% * *
Dey et al. (8) 8.98e-3 7e-5 0.19% * *
Hayat et al. (13) 8.25e-3 1e-4 0.21% * *
Pasquet et al. (25) 9.12e-3 1e-4 0.31% * *

6 Discussion

This preliminary work seeks to answer whether a set of physical constraints can be added to a network
to increase generalization. Our work is interesting because we study soft physical constraints that
are not of the typical form from the physically informed literature– the operators take neither a
differential or integral form. We show that it is possible to add penalty terms sensitive to known
properties that photometric redshift estimates should obey as additional terms to the loss function.

†The 1.4826 coefficient scales MAD such that for normally distributed 1 · MAD = 1 · STD
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Our experiment shows that the augmentations implemented have a positive effect on the point-
wise performance of the network, and decrease the variance in the conditional probability density
output over the space of augmented images (see appendix E). We observed including PINN terms
did not meaningfully improve over augmentation, having very little effect overall on the point-
estimate performance metrics (table 1), how well calibrated the conditional probability estimates are
(appendix C), how much variance the network exhibits on the augmentations (appendix E), or on
the overall structure of the photometric redshift vs spectroscopic redshift relationship (appendix D).
Worse, they dramatically increase training time.

7 Future Work

The most obvious extension of this work would be to search over hyper-parameter γi for each
loss-term. We would also like multiple runs with different seeds for each experiment to understand
the variance of the performance metrics under each experimental group. Our individual pipeline
to create the constraints could be improved: for example, through better modeling of which pixels
contain flux from the host galaxy. Finally, prior work on understanding the failures of soft-physical
constraints from the perspective of the loss function geometry suggest a methodology to visualize the
loss landscape and assess whether it is likely additional loss terms help or hurt optimization (12, 20).
We would augment our study of physical constraints to visualize the loss. It is believed that high
variance loss landscapes contribute to poor performance through their geometry being difficult for
optimizers to navigate (20).

8 Limitations

This is preliminary work and all early conclusions that we draw are limited by that fact. Most
crucially, we have not performed a hyper-parameter search over values of γ, nor have we studied
the variation in results over multiple training runs initialized from different seeds. For example, this
could reveal that in expectation one of the experimental groups could be said to perform better than
the others. Our methodology is also limited by the fact that we have not found an efficient way to
calculate each of the PINN terms, so even if we found that these PINN terms were to help, its unclear
whether small research groups without access to large compute clusters could benefit.
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Journal Letters, 911, L33, doi: 10.3847/2041-8213/abf2c7
[14] He, K., Zhang, X., Ren, S., & Sun, J. 2015, 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 770
[15] Henghes, B., Thiyagalingam, J., Pettitt, C., Hey, T., & Lahav, O. 2022, Mon. Not. Roy. Astron.

Soc., 512, 1696, doi: 10.1093/mnras/stac480
[16] Hoyle, B. 2015, Astron. Comput., 16, 34
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A Full Derivation of Spectrophotometric Flux

If we model the spectrophotometric flux as redshifting the spectra then the two are related as
F (λ′) = F (λ). The photometric filter R(λ) is defined in the observer’s frame and does not receive
any redshifting. With this in place we can write the spectrophotometric flux that an observer at
redshift f(xi, θ) from the same galaxy would measure:

Φ′(λ′) =

∫ λ′
b

λ′
a
F (λ′)R(λ)λ′dλ′∫ λ′
b

λ′
a
c 1
λ′R(λ)dλ′

Making our substitutions and utilizing a change of variables, we can state the spectrophotmetric flux
as an equation of the original wavelength and ν. We will drop the argument λ as we will show that
the crucial dependence of Φ′ on f(xi, θ) is encapsulated in the term ν.

Φ′(ν) =

∫ νλb

νλa
F (λ)R(λ)ν2λdλ∫ νλb

νλa
c 1
λR(λ)dλ

Because f(xi, θ) approximates a conditional density estimate of zi, we can incorporate this CDE by
calculating the expectation of Φ′. Interpreting the c-th output of f(xi, θ) to represent the probability
of redshift p(zi):

E[Φ′](f(xi, θ)) =

∫
Φ(ν)f(xi, θ)dz.

From this our first physical constraint can be stated as:

PFlux =
|E[Φ′](f(xi, θ))− Φ′(1)|

Φ′(1)
.

B Various Implementation Notes

B.1 Spectrophotometric Loss

Finally, a few notes on the implementation of this computation. We approximate the integrals
discretely using the trapezoid rule, which requires that all terms be known at the same λ′. We linearly
interpolate the photometric filter R(λ) to achieve this mapping. The entire computation is done
inside the PyTorch computational graph, allowing backpropogation through the calculation. One
limitation of this technique is that F (λ) is only known on the measurement interval of the original
measuring spectropraph. If the bandpass filter intersects with a region where the F (λ) is outside the
measurement range, we set the value of F (λ) to zero. This biases our calculation of E[Φ′]. Finally,
we avoid the denominator of Φ′ calculation becoming zero by defining Φ′ to be piece-wise equal to
0 when

∫ νλb

νλa
c 1
λR(λ)dλ = 0. A second limitation is that we ignore the measurement error in the

spectral flux density, the photometric bandpass filters, and the measured redshift ẑ.

7

http://doi.org/10.1086/305772
http://doi.org/10.1086/342343


B.2 Rotation Loss

As a few notes on our rotational loss implementation, we only evaluate random flips and rotations
in increments of 90◦, which will preserve the original pixel values to ignore the effects of aliasing.
An interesting alternative implementation would be to query for additional pixels than necessary to
create our galaxy cutouts which would enable arbitrary rotations without interpolating unknown pixel
values. You could ignore the aliasing effects, then randomly draw a rotation angle ϕ from the interval
[0, 360◦), and provide this rotation angle to the neural network. Using the rotation angle to rotate
the input image as the first layer, it maybe possible to state this constraint as a differential operator
df(xi, θ)

dϕ = 0, but we leave this to future/ongoing work.

B.3 Resampling Loss

As a note on the implementation: separating the background pixels from the galaxy pixel in a manner
fast enough to be used as part of the pipeline to a neural network is not a solved problem. In this
iteration of the work we have chosen to trade-off exact modeling of the source for speed in our deep
learning pipeline so we do not rely on explicit modeling of the surface brightness of the galaxy. We
take a conservative approach instead by setting a threshold value on a background pixel that is equal
to the 1σ clipped average of the pixels in the image. Pixels that have value less than 1σ above the
average pixel value are considered background and are randomly drawn from a Gaussian with mean
and standard deviation measured from the image. Non-target sources (stars, other nearby galaxies)
are not removed by this technique, but it is fast enough to be used in our training pipeline.

B.4 Neural Network Details

The neural network utilized is a standard ResNet50 architecture (14), re-initialized with random
weights from the He Normal initialization. Table 2 gives the hyper-parmaeters for each experimental
run. The Adam optimizer (19) was used for each experimental run. For hyperparameters not listed in
Table 2 default values as provided in PyTorch 2.0.0 release were used. No dropout was used. The
final activation had width 1025, where the extinction due to dust was concatenated into the feature
space.

Table 2: Hyperparameters

Hyperparameter Baseline Baseline w/ Aug. PINN
γL2 1e-06 1e-06 1e-06
γΦ 0 0 1e-1
γInvariance 0 0 1e-1
γCDELoss 0 0 1e-1
Initial LR 1e-3 1e-3 1e-3
Batch Size 128 128 128
NEpochs 50 50 50
Optimizer Adam Adam Adam
LR Schedule factor 1e-1 1e-1 1e-1
LR schedule patience 2 2 2

C PIT Visual Metric

The Probability Integral Transform (PIT) is a visual metric that relays information about the bias
and how overly or underly-dispersed the probability distributions are. The PIT is a common place
metric for photometric redshift evaluation (31). It is simply a histogram of occurrences of cumulative
probability distribution integrated up to the true value. The cumulative probability distribution up to
the true value is defined:

CDFi =

∫ ẑ

−∞
f(xi, θ)dz.
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Figure 1: Probability Integral Transform of Baseline CE without augmentation is biased towards
underestimation and is greatly under-dispersed, especially at the extreme tails.

Figure 2: Probability Integral Transform of Baseline with augmentations CE with Augmentation
appears biased towards overestimation and is under-dispersed at the extreme tails, to a lesser extent
than the original CE without augmentation.

In the below, if the rate of occurrences all fall along the horizontal black line then the probability
outputs from the model are well-calibrated. See figures 1, 2, and 3.

D Visualizing Point-Performance

In this section we plot the point estimates of photometric redshift from the expectation of the
conditional density estimate output from our model against the true spectroscopic redshift using a
Kernel Density Estimate (KDE) to visualize the density. We plot all catastrophic outliers as points to
visualize their distribution as well. See figures 4, 5, 6
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Figure 3: Probability Integral Transform of Physically Constrained network. Our Physically
constrained network appears biased towards overestimation and is under dispersed at the extreme
tails. The PIT plot appears very similar to CE with augmentation.

Figure 4: KDE of point-estimate performance for Baseline. We plot the Kernel Density Estimate
and overlay all outliers defined as galaxies whose scaled residual point-estimation of redshift are
greater than 0.15. While the density of outliers fall near the conic swept by the definition’s limit, we
see especially catastrophic outliers throughout the space.

10



Figure 5: KDE of point-estimate performance for Baseline with augmentations. We plot the
Kernel Density Estimate and overlay all outliers defined as galaxies whose scaled residual point-
estimation of redshift are greater than 0.15. In comparison to the baseline model, we see the especially
catastrophic outliers are much more likely to be over estimates of a redshift.

Figure 6: KDE of point-estimate performance for PINN experiment. We plot the Kernel Density
Estimate and overlay all outliers defined as galaxies whose scaled residual point-estimation of redshift
are greater than 0.15. In comparison to the baseline and with augmentation models, we see similarity
between our PINN experiment and augmentation.
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Figure 7: KDE of point-estimate performance for Baseline, with random selection of errors We
plot the same KDE as fig 4, but for a small selection of outlier residuals we also plot the error bars
inferred from the probabilistic output of the model.

D.1 Visualizing Outliers in Point-Performance

In this section we visualize the performance on our test-dataset just as above, but use the error-bar
plotting functionality to randomly select a few catastrophic errors and plot their 0.05-0.95 confidence
regions are vertical error bars. We compute the 0.05-0.95 confidence regions from the output of our
model. We see evidence that many of these catastrophic errors may actually be within the expected
tolerance given the output estimate of the conditional density. Future work could investigate the
use of these error estimates to flag likely catastrophic errors from the test dataset for downstream
cosmological analysis. Previous works have utilized photometric band alone to identify likely
catastrophic outliers (33). See figures 7, 8, and 9.

E Visualizing Predictions and Variability due to Augmentations

In this section we randomly select 12 galaxies from the test set and show the distribution of outputs
from each model on those same 12 galaxies. We use our augmentation pipeline to randomly add
flips and rotations, and resample the background, to produce 20 different estimates of the same
galaxy’s conditional density of Redshift. The main observation is that the baseline model without
augmentation produced more collapsed probability estimates with more variation to these rotations,
which we should not expect the network to be sensitive to. See figures 10, 11, and 12.
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Figure 8: KDE of point-estimate performance for Baseline with augmentations, with random
selection of errors We plot the same KDE as fig 5, but for a small selection of outlier residuals we
also plot the error bars inferred from the probabilistic output of the model. In comparison to baseline,
the error bars of these catastrophic outliers more frequently reach the correct value, implying the
model is more accurately conveying its uncertainty about these points.

Figure 9: KDE of point-estimate performance for PINN experiment, with random selection of
errors We plot the same KDE as fig 6, but for a small selection of outlier residuals we also plot the
error bars inferred from the probabilistic output of the model. In comparison to the baseline and with
augmentation figures, we see the constrained results as similar to the augmentation model
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Figure 10: A selection of Baseline model output conditional density estimates plot over 20
random rotations and background re-samplings of the shown galaxy. The red dashed line is the
value of true redshift. Each colored distribution is 1 of 20 re-sampled CDE from out network.
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Figure 11: A selection of Baseline w/ Augmentation model output conditional density estimates
plot over 20 random rotations and background re-samplings of the shown galaxy. In comparison
the baseline model, the distributions are markedly less variant. This is the precise effect our invariance
to rotation and background samples seeks to achieve, so it would appear these terms are more-or-less
satisfied through augmentation alone.
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Figure 12: A selection of PINN model output conditional density estimates plot over 20 random
rotations and background re-samplings of the shown galaxy. In comparison to the baseline model,
out PINN model is less variant, but it is very similar to the augmentation model, which is much
cheaper to train.
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